Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T05:50:49.821Z Has data issue: false hasContentIssue false

Laser Deposited Iron Garnet Films for Magneto-Optic Applications

Published online by Cambridge University Press:  15 February 2011

H. Kim
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology S-100 44, Stockholm, Sweden
M. Duan
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology S-100 44, Stockholm, Sweden
A.M. Grishin
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology S-100 44, Stockholm, Sweden
K.V. Rao
Affiliation:
Department of Condensed Matter Physics, Royal Institute of Technology S-100 44, Stockholm, Sweden
Get access

Abstract

Submicron thick Bi, Ga substituted dysprosium iron garnet films were laser deposited on Gd3Ga5O12(GGG) and ceramic glass substrates at room temperature and then post annealed by rapid thermal annealing (RTA). From Faraday rotation studies, the films deposited on glass substrates are found to exhibit perpendicular magnetic anisotropy, Faraday rotation of 0.88 deg / μm, and coercive field Hc of 0.88 kOe. On the other hand, films deposited on GGG substrates with the same processing parameters are found to exhibit perpendicular anisotropy, but with much smaller values for Faraday rotation(0.03 deg; μm) and coercive field Hc(0.018 kOe). The uniaxial magnetic anisotropy with easy magnetization axis perpendicular to the film surface is caused by the stress induced on the polycrystalline film / substrate interface. The effect of changing the oxygen pressures, in the range of 20 to 100 mTorr during the deposition process, on the crystalline structure as well as coercive field and Faraday rotation angle are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gomi, M., Utsugi, K. and Abe, M., IEEE Trans. Magn., 22, 1233 (1986).Google Scholar
2. Gomi, M. and Abe, M., Mat. Res. Soc. Symp. Proc., 150, 121 (1989)Google Scholar
3. Shono, K., Kuroda, S., Kano, H., Koshino, N. and Ogawa, S., Mat. Res. Soc. Symp. Proc., 150, 131 (1989)Google Scholar
4. Defang, Shen, Tengda, Du, Yong, Zhou, Minjuan, Zhang, Bin, Cheng and Weizhu, Zhang, J. MMM., 88, 205 (1994)Google Scholar
5. Duan, M., Grishin, A. M. and Rao, K. V., IEEE Trans. Magn., 31 (6), 3245 (1995).Google Scholar
6. Shono, K., Kuroda, S. and Ogawa, S., IEEE Trans. Magn., 27, 5130 (1991).Google Scholar
7. Davis, G. M. and Gowe, M. C., Appl. Phys. Lett. 55, 122 (1989).Google Scholar
8. Ramesh, R., Luther, K., Wilkens, B. and Tarascon, J. M., Appl. Phys. Lett. 55, 1505 (1990).Google Scholar
9. Otsubo, S., Maeda, T., Minamikawa, T. and Shinizu, T., Jpn. J. Appl. Phys. 29, L133 (1089).Google Scholar
10. Morimoto, A., Otsubo, S., Shimizu, T. and Ogawa, T., Mater. Res. Soc. Symp. Proc., 191, 31 (1990).Google Scholar
11. Kidoh, H., Morimoto, A. and Shinizu, T., Appl. Phys. Lett. 59 (2), 237 (1991).Google Scholar
12. Dorsey, P. C., Bushnell, S. E., Seed, R. G. and Vittoria, C., J. Appl. Phys. 74 (2), 1242 (1993).Google Scholar
13. Hansen, P., Krumme, J. P.,and Mergel, D., Proc. MORIS '91, J. Magn. Soc. Jpn. 15, Suppl No.S1, 219 (1991).Google Scholar
14. Gomi, M., Tanida, T., and Abe, M., J. Appl. Phys. 57, 3888 (1985).Google Scholar
15. Matsumoto, K., Sasaki, S., Yamanobe, Y., Yamaguchi, K., Fujii, T., and Asahara, Y., J. Appl. Phys. 70, 1624 (1991).Google Scholar
16. Duan, M., Grishin, A. M., Rao, K. V. and Suzuki, T., MORIS-94, Tokyo, sept 1994, 28-P-14.Google Scholar