Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-18T01:16:07.943Z Has data issue: false hasContentIssue false

Investigation of Specimen- and Grain-Size Dependence of Yield Stress in Electrodeposited Nanocrystalline Copper through Micropillar Compression

Published online by Cambridge University Press:  29 April 2013

Norihiko L. Okamoto
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Daisuke Kashioka
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Haruyuki Inui
Affiliation:
Department of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
Get access

Abstract

The specimen-size dependence of yield stress of nanocrystalline copper with average grain size (d) of 360 nm has been investigated through uniaxial compression tests of micrometer-size pillars fabricated via the focused ion beam method. The yield stress decreases with the decrease in the micropillar size while the yield stress is almost constant for larger micropillars. The critical specimen size (t) is approximately 12.5 μm, correspoinding to the critical (t/d) value, (t/d)*, of 35, which is much larger than that for coarse-grained copper polycrystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pell-Walpole, W. T., J. Inst. Metal 69, 131 (1943).Google Scholar
Armstrong, R. W., J. Mech. Phys. Solids 9, 196 (1961).10.1016/0022-5096(61)90018-7CrossRefGoogle Scholar
Thompson, A. W., Scripta Metall. 8, 145 (1974).10.1016/0036-9748(74)90461-XCrossRefGoogle Scholar
Miyazaki, S., Shibata, K., and Fujita, H., Acta Metall. 27, 855 (1979).10.1016/0001-6160(79)90120-2CrossRefGoogle Scholar
Villars, P., Pearson’s Handbook: Crystallographic Data for Intermetallic Phases (ASM International, Amsterdam, 1997).Google Scholar
Uchic, M. D., Dimiduk, D. M., Florando, J. N., and Nix, W. D., Science 305, 986 (2004).10.1126/science.1098993CrossRefGoogle Scholar
Jang, D. C. and Greer, J. R., Scripta Mater. 64, 77 (2011).10.1016/j.scriptamat.2010.09.010CrossRefGoogle Scholar
Gu, X. W., Loynachan, C. N., Wu, Z. X., Zhang, Y. W., Srolovitz, D. J., and Greer, J. R., Nano Lett. 12, 6385 (2012).10.1021/nl3036993CrossRefGoogle Scholar
Greer, J. R. and De Hosson, J. T. M., Prog. Mater Sci. 56, 654 (2011).10.1016/j.pmatsci.2011.01.005CrossRefGoogle Scholar
Youngdahl, C. J., Hugo, R. X., Kung, H., and Weertman, J. R., Mater. Res. Soc. Symp. Proc. 634, B1.2.1 (2000).10.1557/PROC-634-B1.2.1CrossRefGoogle Scholar