Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:44:48.419Z Has data issue: false hasContentIssue false

In-Situ Resistance Measurements During Rapid Thermal Annealing for Process Characterization

Published online by Cambridge University Press:  15 February 2011

E.G. Colgan
Affiliation:
IBM Microelectronics Division, Fast Fishkill, NY 12533.
C. Cabral Jr.
Affiliation:
IBM Microelectronics Division, Fast Fishkill, NY 12533.
L.A. Clevenger
Affiliation:
IBM Microelectronics Division, Fast Fishkill, NY 12533.
J.M.E. Harper
Affiliation:
IBM Research Division, Yorktown Heights, NY 10598.
Get access

Abstract

Measurement of resistance in-situ during rapid thermal annealing is a powerful technique for process characterization and optimization. A major advantage of in-situ resistance measurements is the very rapid process learning. With silicides, in-situ resistance measurements can quickly determine an appropriate thermal process in which a low resistance silicide phase is formed without the agglomeration or inversion of silicide/polycrystalline silicon structures. One example is an optimized two step anneal for CoSi2 formation which was developed in less than one clay. Examples of process characterization include determining the phase formation kinetics of TiSi2 (C49 and C54), Co2Si, and CoSi2 using in-situ ramped resistance measurements. The stability of TiSi2 or CoSi2/poly-Si structures has also been characterized by isothermal measurements. Resistance measurements have been made at heating rates from 1 to 100°C/s and temperatures up to 1000°C. The sample temperature was calibrated by melting Ag, Al, or Au/Si eutectics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Harper, J. M. E., Clevenger, L. A., Colgan, E. G., Cabral, C. Jr, and Arcot, B., Mat. Res. Soc. Symp. Proc. Vol. 318, 307 (1994).Google Scholar
2 Mittemeijer, E. J., Gent, A. Van, and Schaaf, P. J. Van der, Metall. Trans. A, 17A, 1441 (1986).Google Scholar
3 Mittemeijer, E. J., Cheng, L., Schaaf, P. J. van der, Brakman, C. M., and Korevaar, B. M., Metall. Trans. A, 19A, 925 (1988).Google Scholar
4 Colgan, E. G., Cabral, C. Jr., and Kotecki, D. E., J. Appl. Phys. 77 (2). 614 (1995).Google Scholar
5 Colgan, E. G., Clevenger, L. A., and Cabrai, C. Jr., Appl. Phys. Lett. 65 (16), 2009 (1994).Google Scholar
6 Li, X. -H., Carlsson, J. R. A., Gong, S. F., and Hentzell, H. T. G., J. Appl. Phys. 72 (2), 514 (1992).Google Scholar
7 Thompson, R. D., Takai, H., Psaras, P. A., and Tu, K. N., J. Appl. Phys. 61 (2), 540 (1987).Google Scholar
8 Clevenger, L. A., Harper, J. M. E., Cabral, C. Jr., Nobili, C., Ottaviani, G., and Mann, R., J Appl. Phys. 72 (10), 4978 (1992).Google Scholar
9 Matsubara, Y., Horiuchi, T., and Okumura, K., Appl. Phys. Lett. 62 (21), 2634 (1993).Google Scholar
10 Mann, R. W. and Clevenger, L. A., J. Electrochem. Soc. 141 (5), 1347 (1994).Google Scholar
11 Lau, S. S., Mayer, J. W., and Tu., K. N. J. Appl. Phys. 49 (1), 4005 (1978).Google Scholar
12 Lien, C-D., Nicolet, M-A., Pai, C. S., and Lau, S. S., Appl. Phys. A 36, 153 (1985).Google Scholar
13 Lim, B. S., Ma, E., Nicolet, M-A., and Natan, M., J. Appl. Phys. 61 (11), 5027 (1987).Google Scholar
14 Miura, H., Ma, E., and Thompson, C. V., J. Appl. Phys. 70 (8), 4287 (1991).Google Scholar
15 Lien, C-D., Nicolet, M-A., and Lau, S. S., Appl. Phys. A 34, 249 (1984).Google Scholar
16 Appelbaum, A., Knoell, R. V., and Murarka, S. P., J. Appl. Phys 57 (6), 1880 (1985).Google Scholar
17 D’Heurle, F. M. and Petersson, C. S., Thin Solid Films 128, 283 (1985).Google Scholar
18 Van den hove, L., Wolters, R., Maex, K., De Keershaecker, R., and Declerck, G., J. Vac. Sci. Technol. B 4 (6), 1358 (1986).Google Scholar
19 Revesz, P., Zheng, L. R., Hung, L. S., and Mayer, J. W., Appl. Phys. Lett. 48 (23), 1591 (1986).Google Scholar
20 Hong, Q. Z., Hong, S. Q., D’Heurle, F. M., and Harper, J. M. E., Thin Solid Films, 253 (1-2), 479 (1994).Google Scholar
21 Jiang, H., Osburn, C. M., Xiao, Z. G., McGuire, G., and Rozgonyi, G. A., J. Electrochem. Soc. 139 (1), 211 (1992).Google Scholar