Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T14:46:05.663Z Has data issue: false hasContentIssue false

Inside Submicron MOSFETS

Published online by Cambridge University Press:  25 February 2011

W. J. Skocpol*
Affiliation:
AT&T Bell Laboratories, Room 4E-330, Crawfords Comer Road, Holmdel, NJ 07733
Get access

Abstract

Nanofabrication techniques allow us to carve out narrow (40 nm) conducting channels and multiple voltage probes inside a submicron portion of a “conventional” silicon MOSFET. The repeated capture and emission of single electrons at a particular interface trap can be observed, because this changes the number of scatterers, producing sudden switching of the conductance. The dependence of capture and emission rates on lattice temperature, electron temperature, and gate voltage are consistent with a simple “configuration coordinate” model of the coupling between the trapped electron and the surrounding lattice. At low temperatures, the electrons being scattered diffuse considerable distances Lϕ before losing quantum phase information. When measured at scale Lϕ, random quantum interference causes a typical (rms) conductance change of e2/h = (25.8 kΩ)−1 (“universal conductance fluctuations”). From this, the resistance fluctions at longer and shorter voltage probe spacings can be predicted. Each scatterer substantially affects the quantum interference throughout a region of size Lϕ.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Skocpol, W.J., Voshchenkov, A.M., Howard, R.E., Hu, E.L., Jackel, L.D., Epworth, R.W., Fetter, L.A., Grabbe, P., and Tennant, D.M., Physica 109/110B, 2105 (1982).Google Scholar
2. Skocpol, W.J., Jackel, L.D., Hu, E.L., Howard, R.E., and Fetter, L.A., Phys. Rev. Lett. 49, 951 (1982).Google Scholar
3. Skocpol, W.J., Jackel, L.D., Howard, R.E., Hu, E.L., and Fetter, L.A., Physica 117/118B, 667 (1983).Google Scholar
4. Skocpol, W.J., Jackel, L.D., Howard, R.E., Craighead, H.G., Fetter, L.A., Mankiewich, P.M., Grabbe, P., and Tennant, D.M., Surf. Sci. 142, 14 (1984).Google Scholar
5. Skocpol, W.J., Jackel, L.D., Howard, R.E., Mankiewich, P.M., Behringer, R.E., Fetter, L.A., and Tennant, D.M., in Proc. Int. Conf. on Localization, Interaction, and Transport Phenomena in Impure Metals, Braunschweig, Sept 1984: Supplement, edited by Schweitzer, L. and Kramer, B. (Physik.-Tech. Bendesastait, Braunschweig, 1984), p. 7.Google Scholar
6. Ralk, K.S., Skocpol, W.J., Jackel, L.D., Howard, R.E., Fetter, L.A., Epworth, R.W., and Yenant, D.M., Phys. Rev. Lett. 52, 228 (1984).Google Scholar
7. Jatkd, L.D., Skocpol, W.J., Howard, R.E., Fetter, L.A., Epworth, R.W., and Tennant, D.M., in Proc. 17th Int. Conf. on the Physics of Semiconductors, San Francisco, August 1984, edited by Chadi, J.D. and Harrimon, W.A. (Sprinp-Verlag, New York, 1985), p. 221.Google Scholar
8. Howard, R.E., Skocpol, W.J., Jackel, L.D., Mankiewidi, P.M., Fetter, L.A., Tennant, D.M., Epworth, R.E., and Ralls, K.S., IEEE Trans. Elctron Dev. ED–32, 1669 (1985).Google Scholar
9. Skoepol, W.J., Mankiewids, P.M., Howard, R.E., Jackel, L.D., Tennant, D.M., and Stone, A.D., Phys. Rev. Lett. 56, 2865 (1986).CrossRefGoogle Scholar
10. Skoepol, W.J., Mankiewidi, P.M., Howard, R.E., Jackel, L.D., and Tennant, D.M., in Proc. 18th mt Conf. on the Physics of Semiconductors, Stockholm, August 1986, to appear.Google Scholar
11. Skocpol, W.J., Mankiewidh, P.M., Howard, R.E., Jackel, L.D., Tennant, D.M., and Stone, A.D., unpulblished.Google Scholar
12. Howard, R.E., Jackel, L.D., Mankiewidi, P.M., and Skocpol, W.J., Science 231, 346 (1986).Google Scholar
13. Skcepol, W.J., Jackel, L.D., Howard, R.E., Mankiewich, P.M., and Tennant, D.M., Surf. Sci. 170, 1 (1986).CrossRefGoogle Scholar
14. Skocpol, W.J., in The Physics and Fabrication of Microstructures and Microdevices, edited by Kelly, M.J. and Weisbuch, C. (Springer, Berlin, 1986), p. 255.Google Scholar
15. Howard, R.E., Liao, P.F., Skoepol, W.J., Jackel, L.D., and Craighead, H.G., Science 221, 117 (1983).Google Scholar
16. Howard, R.E., Jackel, L.D., and Skocpol, W.J., Microelectronic Engineering 3, 3 (1985).Google Scholar
17. Howard, R.E., Skocpol, W.J., and Jackel, L.D., Ann. Rev. Mater. Sci. 16, 441 (1986).CrossRefGoogle Scholar
18. Mankiewich, P.M., Howard, R.E., Jackel, L.D., Skocpol, W.J., and Tennant, D.M., J. Vac. Sci. Technol. B 4, 380 (1986).Google Scholar
19. Uren, M.J., Day, D.J., and Kirton, M.J., Appl. Phys. Left. 47, 1195 (1985).Google Scholar
20. Nicollian, E.H. and Brews, J.R., MOS Physics and Technology, (Wiley, New York, 1982).Google Scholar
21. Baraff, G.A., Kane, E.O., and Schluter, M., Phys. Rev. B 21, 3563 (1980).Google Scholar
22. Kirton, M.J. and Uren, M.J., Appl. Phys. Lett. 48, 1270 (1986).Google Scholar
23. Lee, P.A. and Ramakrishnan, T.V., Rev. Mod. Phys. 57, 287 (1985).Google Scholar
24. Bishop, D.J., Tsui, D.C., and Dynes, R.C., Phys. Rev. B 26, 773 (1992).CrossRefGoogle Scholar
25. Bergmann, G., Phys. Reports 107, 1 (1984).Google Scholar
26. Al'tshuler, B.L., Aronov, A.G., and Spivak, B.Z., Pis'ma Zh. Ekap. Tear. Fiz. 33, 101 (1981); D. Yu Sharvin and Yu.V. Sharvin, Pis'ma Zh. Eksp. Teor. Fiz. 34, 272 (1981); and subsequent references too numerous to mention here.Google Scholar
27. Al'tshuler, B.L., Pis'ma Zh. Eksp. Teor. Fiz. 41, 648 (1985).Google Scholar
28. Stone, A.D., Phys. Rev. Lett. 54, 2692(1985).Google Scholar
29. Lee, P.A. and Stone, A.D., Phys. Rev. Lett. 55, 1622 (1985).Google Scholar
30. Al'tshuler, B.L. and Khmel'nitskii, D.E., Pis'ma Zh. Eksp. Teor. Fiz. 42, 291 (1985).Google Scholar
31. Al'tshuler, B.L. and Spivak, B.Z., Pis'ma Zh. Eksp. Teor. Phys. 42, 363 (1985).Google Scholar
32. Imry, Y., Europhys. Lett. 1,249 (1986).Google Scholar
33. Al'tshuler, B.L., Kravtsov, V.E., and Lerner, I.V., Pis'ma Th. Eksp. Teor. Fiz. 43, 342 (1986).Google Scholar
34. Feng, S., Lee, P.A., and Stone, A.D., Phys. Rev. Lett. 56, 1960 (1986).Google Scholar
35. Aronov, A.G., Zyuzin, A.Yu., and Spivak, B.Z., Pis'ma Zh. Eksp. Teor. Fiz. 43, 431 (1986).Google Scholar
36. Lee, P.A., Stone, A.D., and Fukuyarna, H., Phys. Rev. B (to appear).Google Scholar
37. Umbach, C.P., Washburn, S., Laibowitz, R.B., and Webb, R.A., Phys. Rev. B 30, 4048 (1984).Google Scholar
38. Washburn, S., Urnbach, C.P., Laibowitz, R.B., and Webb, R.A., Phys. Rev. B 32, 4789 (1985).Google Scholar
39. Umbach, C.P., Van Haesendonck, C., Laibowitz, R.B., Washburn, S., and Webb, R.A., Phys. Rev. Lett. 56, 386 (1986).Google Scholar
40. Benoit, A.D., Washburn, S., Umbach, C.P., Laibowitz, R.B., and Webb, R.A., Phys. Rev. lett. 57, 1765 (1986).Google Scholar
41. Lcini, J.C., Bishop, D.J., Kastner, M.A., and Melngailis, J., Phys. Rev. Lett. 55, 2987 (1985).Google Scholar
42. Kaplan, S.B. and Hartstein, A., Phys. Rev. Lett. 56, 2403 (1986).Google Scholar
43. Webb, R.A., Washburn, S., Umbach, C.P., and Laibowitz, R.B., Phys. Rev. Lett. 54, 2696 (1985).Google Scholar
44. Benoit, A., Umbach, C.P., Laibowitz, R.B., and Webb, R.A., unpublished.Google Scholar
45. Feng, et al. , erratum, Phys. Rev. Lett. 56, 2772 (1986).Google Scholar