Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T09:18:23.609Z Has data issue: false hasContentIssue false

The Growth of Homo-Epitaxial Silicon at Low Temperatures Using Hot Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

J. Thiesen
Affiliation:
Also of the Dept. of Electrical Eng., University of Colorado, Boulder, CO
K.M. Jones
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
R. Matson
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
R. Reedy
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
E. Iwaniczko
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
H. Mahan
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
R. Crandall
Affiliation:
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., Golden, CO, 80401
Get access

Abstract

We report on the first known growth of high-quality epitaxial Si via the hot wire chemical vapor deposition (HWCVD) method. This method yields epitaxial Si at the comparatively low temperatures of 195° to 450°C, and relatively high growth rates of 3 to 20 Å/sec. Layers up to 4500-Å thick have been grown. These epitaxial layers have been characterized by transmission electron microscopy (TEM), indicating large regions of nearly perfect atomic registration. Electron channeling patterns (ECPs) generated on a scanning electron microscope (SEM) have been used to characterize, as well as optimize the growth process. Electron beam induced current (EBIC) characterization has also been performed, indicating defect densities as low as 8×104/cm2. Secondary ion beam mass spectrometry (SIMS) data shows that these layers have reasonable impurity levels within the constraints of our current deposition system. Both n and p-type layers were grown, and p/n diodes have been fabricated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mohajerzadeh, S., Selvakumar, C. R., Brodie, D. E., Robertson, M. D. & Corbett, J. M., Mat. Res. Soc. Symp. Proc. 388, 201206 (1995).Google Scholar
2. Anthony, B., Breaux, L., Hsu, T., Bannerjee, S. & Tasch, A., J Vac. Sci. Technol. B. 7, (4):621(1989).Google Scholar
3. Molder, S. M., Liu, W. K., Ohtani, N. & Joyce, B. A. Appl. Phys. Lett 60, (18):22552257 (1992).Google Scholar
4. Chelly, R., Werckmann, J., Angot, T., Louis, P., Bolmont, D. & Koulmann, J. J. Thin Solid Films 294, 8487 (1997).Google Scholar
5. Ramana Murty, M. V. & Atwater, H. A. Phys. Rev. B 49, (12):84838486 (1994).Google Scholar
6. Sedgwick, T. O., Agnello, P. D., Berkenblit, M. & Kuan, T. S. Low-Temperature Selective Epitaxial Growth of Silicon at Atmospheric Pressure in an Ultra-clean System. PreprintGoogle Scholar
7. Kobayashi, K., Fukumoto, K., Katayama, T., Higaki, T. & Abe, H., 1992 Intl. Conf. on Solid State Devices and Materials 17–19 (1992).Google Scholar
8. Meyerson, B. inventor. Method and Apparatus for Low Temperature, Low Pressure Chemical Vapor Deposition of Epitaxial Silicon Layers. US. Pat. No., 5,298,452. (1994).1 Google Scholar
9. Thompson, P. E., Twigg, M. E., Godbey, D. J. & Hobart, K. D., J Vac. Sci. Technol. B 11, (3):10771082 (1999).Google Scholar
10. Ramm, J., Beck, E., Dommann, A., Eisele, I. & Kruger, D., Thin Solid Films 246, 158163 (1994).Google Scholar
11. Violette, K. E., O'Neil, P. A., Ozturk, M. C., Christensen, K. & Maher, D. M., ElectroChem. Soc. Proc. 96-5, 375379 (1999).Google Scholar
12. Varhue, W. J., Andry, P. S., Rogers, J. L., Adams, E., Kontra, R. & Lavoie, M., Solid State Technology 163170 (1996).Google Scholar
13. Oshima, T., Sano, M., Yamada, A., Konagai, M. & Takahashi, K., Appl. Surface Sci. 79/80, 215219 (1994).Google Scholar
14. Ohmi, T., Hashimoto, K., Morita, M. & Shibata, T.,. J. Appl. Phys 69, (4):20622071 (1991).Google Scholar
15. Kasai, N. & Endo, N., J Electrochem. Soc. 139, (7):19831987 (1987).Google Scholar
16. Lips, K. Low Temperature Homoepitaxial Si Growth using ECR Remote Plasma. Hans Meitner Institut: (1999). Presentation of Work,Google Scholar
17. Eaglesham, D. J., Gossman, H. J. & Cerullo, M., Phyiscal Review Letters 65, (10):12271230 (1990).Google Scholar
18. Molenbroek, E. & Mahan, A., J. Applied Physics 82, (4): 19091917 (1998).Google Scholar
19. Molenbroek, E. C. Deposition of Hydrogenated Amorphous Silicon with the Hot Wire Technique. (1995). University of Colorado. 1 p.Google Scholar
20. Doyle, J., Robertson, G. H., Lin, M. Z. & Gallagher, A. J Appl. Phys 64, (6):32153222 (1988).Google Scholar
21. Sutoh, A., Okada, Y., Ohta, S. & Kawabe, M., Jap. J. Applied Physics 34, (Part2, 10b):L1379–L1382 (1995).Google Scholar
22. Brogueira, P., Conde, J. P., Arekat, S. & Chu, V., J. Appl. Phys. 78, (6):37763783 (1995).Google Scholar
23. Heintze, M., Zedlitz, R., Wanka, H. N. & Schubert, M. B., J Applied Physics 79, (5):26992706 (1996).Google Scholar
24. Gupta, P., Colvin, V. L. & George, S. M., Physical Review B 37, (14):82348243 (1988).Google Scholar
25. Northrup, J., Phys. Rev. B Rapid Communications 44, (3):14191422 (1991).Google Scholar
26. Ishiazaka, A. & Shiraki, Y., J. Electrochem. Soc. 133, (4):666671 (1986).Google Scholar
27. Matson, R., Thiesen, J., Crandall, R. S. et al. , The Use of Electron Channeling Patterns for Process Optimization of Low Temperature Epitaxial Silicon Using How Wire Chemical Vapor Deposition. Materials Research Society. Spring Symp. Session V.(1999).Google Scholar
28. Taylor, M. E. & Atwater, H. A.. Surface Science 127–129, 159163 (1998).Google Scholar
29. Murty, M. V. R. & Atwater, H. A., Surface Science 374, 283290 (1997).Google Scholar
30. Boland, I. J. & Parsons, G. N., Science 256, 13041306 (1992).Google Scholar
31. Pearton, S. J., International Journal of Modern Physics 8, (9): 10931158 (1994).Google Scholar
32. Johnson, N. M., Doland, C., Ponce, F., Walker, J. & Anderson, G., Physica b 170, 320 (1991).Google Scholar
33. Boland, J., Surface Science 261, 1728 (1992).Google Scholar
34. Niwano, M., Terashi, M. & Kuge, J., Surface Science 420, 616 (1999).Google Scholar
35. CS Office Pro. CambridgeSoft Corp. (3.0): Cambridge, Ma. CambridgeSoft Corp. (1999).Google Scholar
36. Heyman, J., Ager, J. W.E., Haller, E., Johnson, N. M., Walker, J. & Doland, C. M., Phys Rev. B. 45, (23):-1336313366 (1992).Google Scholar
37. Doris, B., Fretwell, J., Erskine, J. L. & Bannerjee, S. K., Appl. Phys. Lett. 70, (21):28192821 (1997).Google Scholar