Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-30T21:01:25.288Z Has data issue: false hasContentIssue false

Growth and Properties of Epitaxial YBa2Cu3O7 thin Films on{1102}Al2O3

Published online by Cambridge University Press:  28 February 2011

D. K. Fork
Affiliation:
Dept. of Applied Physics, Stanford University, Stanford, CA 94305
T. H. Geballe
Affiliation:
Dept. of Applied Physics, Stanford University, Stanford, CA 94305
K. Char
Affiliation:
Conductus, Inc., Sunnyvale, CA 94086
S. S. Laderman
Affiliation:
Circuit Technology R&D, Hewlett‐Packard Company, Palo Alto, CA 94304
R. Taber
Affiliation:
Circuit Technology R&D, Hewlett‐Packard Company, Palo Alto, CA 94304
F. Bridges
Affiliation:
Dept. of Physics, University of California, Santa Cruz, CA
F. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
J. B. Boyce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
G. A. N. Connell
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
Get access

Abstract

Epitaxial YBa2Cu3O7 (YBCO) films were grown on r‐plane A12O3 {1102} by laser ablation. X‐ray diffraction shows that films are epitaxial with the c‐axis perpendicular to the substrate and the a or b axes parallel to (2201), although the full width at half maximum of the rocking curve is larger compared to those of epitaxial films on SrTiO3. The critical temperatures (zero resistance) are between 85 K and 88 K with transition widths between 0.5 K and 3 K. The 300 K resistivity of 250 μΩextrapolates to zero at zero temperature and the critical current is as high as 5 x 106 A/cm2 at 4.2 K according to magnetization hysteresis measurements. Surface resistance data shows that 2000 Å thick epitaxial films on {1102} have about 1 mΩ at 13 GHz at 4.2 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Richards, P. L., Clarke, J., Leoni, R., Lerch, P., Verhese, S., Beasley, M. R., Geballe, T. H., Hammond, R. H., Rosenthal, P. and Spielman, S. R., Appl. Phys. Lett. 54, 283 (1989).Google Scholar
2 Witanachchi, S., Patel, S., Shaw, D. T. and Kwok, H. S., Appl. Phys. Lett. 55,295 (1989).Google Scholar
3 Fenner, D. B., Viano, A. M., Boyce, J. B., Connell, G. A. N., Ponce, F. A., Tramontana, J. C., Appl. Phys. Lett., submitted. Also E. W. Chase, T. Venkatesan, C. C. Chang, B. Wilkins, W. L. Feldman, P. Barboux, J. M. Tarascon, D. L. Hart, X. Wu and A. Inam, J. Mater. Res., 4, 1326 (1989).Google Scholar
4 Fork, D. K., Char, K., Bridges, F., Tahara, S., Lairson, B., Boyce, J. B., Connell, G. A. N. and Geballe, T. H., Int. Conf. Mater. & Mech. of Superconductivity, Stanford July 1989, Physica C, Edited by N. E. Phillips, R. N. Shelton, and W. A. Harrison (in press)Google Scholar
5 Laderman, S. S., Char, K., Lee, Mark, Hahn, M. R., Hammond, R. H., Beasley, M. R., Geballe, T. H., Kapitulnik, A. and Barton, R., Phys. Rev. B 22, 11648 (1989).Google Scholar
6 Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H., and Laderman, S. S., Appl. Phys. Lett. 55, 595 (1989).Google Scholar
7 Ponce, F. A., Appl. Phys. Lett. 41, 371 (1982).Google Scholar
8 Bean, C. P., Phys. Rev. Lett. 8, 250 (1962).Google Scholar
9 Char, K., Fork, D. K., Geballe, T. H., Laderman, S. S., Tabor, R. C., Jacowitz, R. D., Bridges, F., Connell, G. A. N., J. B. Boyce, Appl. Phys. Lett., submitted.Google Scholar
10 Ponce, F., et al., unpublished.Google Scholar
11 Tietz, L. A., Carter, C. B., Lathrop, D. K., Russek, S. E., Buhrman, R. A. and Michael, J. R., J. Mater. Res., 4, 1072 (1989).Google Scholar