Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T21:26:03.605Z Has data issue: false hasContentIssue false

Growth and Characterization of bulk GaN by Ga Vapor Transport

Published online by Cambridge University Press:  01 February 2011

Phanikumar Konkapaka
Affiliation:
Dept. of Electrical and Computer Engineering, Cornell University, Ithaca NY 14853.
Huaqiang Wu
Affiliation:
Dept. of Electrical and Computer Engineering, Cornell University, Ithaca NY 14853.
Yuri Makarov
Affiliation:
Semiconductor Technology Research, Richmond VA
Michael G. Spencer
Affiliation:
Dept. of Electrical and Computer Engineering, Cornell University, Ithaca NY 14853.
Get access

Abstract

Bulk GaN crystals of dimensions 8.5 mm × 8.5 mm were grown at growth rates greater than 200μm/hr using Gallium Vapor Transport technique. GaN powder and Ammonia were used as the precursors for growing bulk GaN. Nitrogen is used as the carrier gas to transport the Ga vapor that was obtained from the decomposition of GaN powder. During the process, the source GaN powder was kept at 1155°C and the seed at 1180°C. Using this process, it was possible to achieve growth rates of above 200 microns/hr. The GaN layers thus obtained were characterized using X-Ray diffraction [XRD], scanning electron microscopy [SEM], and atomic force microscopy [AFM]. X-ray diffraction patterns showed that the grown GaN layers are single crystals oriented along c direction. AFM studies indicated that the dominant growth mode was dislocation mediated spiral growth. Electrical and Optical characterization were also performed on these samples. Hall mobility measurements indicated a mobility of 550 cm2/V.s and a carrier concentration of 6.67 × 1018/cm3

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES:

[1] Nakamura, S., Mukai, T., Senoh, M., Appl. Phys. Lett. 64 (1994) 1687 Google Scholar
[2] Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Marsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35 (1996) L74.Google Scholar
[3] Nakamura, S., J. Crystal Growth 170 (1997) 11.Google Scholar
[4] Johnson, M. A. L., Hughes, W. C., Rowland, W. H. Jr, Cook, J.W. Jr, Schetzina, J.F., Leonard, M., Kong, H. S., Edmond, J. A., Zawada, J., J. Crystal Growth 175/176 (1997) 72.Google Scholar
[5] Cheng, T. S., Hooper, S. E., Jenkins, L. C., Foxon, C. T., Lacklison, D. E., Dewship, J. D., Orton, J. W., J. Crystal Growth 166 (1996) 597.Google Scholar
[6] Melton, W. A., Pancove, J. I., J. Crystal Growth 178 (1997) 168.Google Scholar
[7] Dupuis, R. D., J. Crystal Growth 178 (1997) 56 Google Scholar
[8] Kim, S. T., Lee, Y. J., Moon, D. C., Hong, C. H., Yoo, T. K., J. Crystal Growth 194 (1998) 37.Google Scholar
[9] Porowski, S., Grzegory, I., J. Crystal Growth 178 (1997) 174.Google Scholar
[10] Vodakov, Yu. A., Mokhov, E. N., Roenkov, A. D., Boiko, M. E., Baranov, P.G., J. Crystal Growth 183 (1998) 10.Google Scholar
[11] Ejder, E., J. Crystal Growth 22 (1974) 44.Google Scholar
[12] Elwell, D., Feigelson, R. S., Simkins, M.M., Tiller, W. A., J. Crystal Growth 66 (1984) 45.Google Scholar
[13] Zetterstorm, R. B., J. Mater. Sci. 5 (1970) 1102.Google Scholar
[14] Yamane, H., Shimada, M., Sekiguchi, T., DiSalvo, F. J., J. Crystal Growth 186 (1998) 8.Google Scholar
[15] Lin, Pei-Yen, Wu, YewChung Sermon, Materials Chemistry and Physics 80 (2003) 397400.Google Scholar
[16] Sharma, N., Thomas, P., Tricker, D., Humphreys, C., Appl. Phys. Lett. 77 (2000) 1274.Google Scholar
[17] Mahanty, S., Hao, M., Sugahara, T., Fareed, R. S. Q., Morishima, Y., Naoi, Y., Wang, T., Sakai, S., Mater. Lett. 41 (1999) 67.Google Scholar
[18] Chen, Y., Takeuchi, T., Amano, H., Akasaki, I., Yamada, N., Kaneko, Y., Wang, S. Y., Appl. Phys. Lett. 72 (1998) 710.Google Scholar
[19] Wu, X. H., Elsass, C. R., Abare, A., Mack, M., Keller, S., Petroff, P. M., Denbaars, S. P., Speck, J. S., Appl. Phys. Lett. 72 (1998) 692.Google Scholar
[20] Cho, H. K., Lee, J. Y., Yang, G. M., Kim, C. S., Appl. Phys. Lett. 79 (2001) 215 Google Scholar
[21] Liliental-Weber, Z., Chen, Y., Ruvimov, S., Washburn, J., Phys. Rev. Lett. 79 (1997) 2835.Google Scholar
[22] Lin, Y. S., Ma, K.-J., Hsu, C., Feng, S. –W., Cheng, Y.–C., Liao, C.–C., Yang, C. C., Chou, C.–C., Lee, C.-M., Chyi, J.–I., Appl. Phys. Lett. 77 (2000) 2988.Google Scholar
[23] Munir, Z. A., Searcy, A. L., The Journal of Chemical Phys. 41 (1965) 4223.Google Scholar
[24] Averyanova, M. V., Przhevalskii, I. N., Karpov, S. Yu., Makarov, Yu. N., Ramm, M. S., Talalaev, R. A.. Mat. Sci. and Engg. B43 (1997) 167.Google Scholar
[25] Newman, N., Ross, J., and Rubin, M.., Appl. Phys. Lett. 62 1993) 11.Google Scholar
[26] Koleske, D. D., Wickenden, A. E., Henry, R. L., Culbertson, J. C., Twigg, M. E., J. Crystal Growth 223 (2001) 466.Google Scholar
[27] Koleske, D. D., Wickenden, A. E., Henry, R. L., Culbertson, J. C., Twigg, M. E., Gorman, R. J., Appl. Phys. Lett. 62 1993) 73 (1998) 2018.Google Scholar