Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-05T00:07:08.140Z Has data issue: false hasContentIssue false

Fractal Aspects of Ceramic Synthesis

Published online by Cambridge University Press:  28 February 2011

Dale W. Schaefer
Affiliation:
Division 1152 and Division 1845, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Keith D. Keefer
Affiliation:
Division 1152 and Division 1845, Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

The concept of fractal geometry is used to describe the structure of silica polymers, colloidal aggregates, and critical systems. We illustrate the interpretation of scattering curves (X-ray, neutron and light) for fractal systems, and review simple growth models which generate fractal structures. We describe the polymerization of silica under various conditions and demonstrate that, depending on chemical conditions, polymerization maps onto simple fractal growth processes. The key factors which control growth are monomer-cluster vs. cluster-cluster growth, and reaction-limited vs. diffusion-limited growth.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B. B., The Fractal Geometry of Nature, (Freeman, San Francisco, 1982).Google Scholar
2. Stanley, H. E. and Ostrowsky, N., On Growth and Form (Martinus-Nijhoff, Boston, 1986).Google Scholar
3. Witten, T. A. and Sander, L. M., Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
4. Forrest, S. R. and Witten, T. A., J. Phys. A 12, LT09 (1979).CrossRefGoogle Scholar
5. Ball, R. C., Ref. 2, p. 69.Google Scholar
6. Schaefer, D. W., Martin, J. E., Hurd, A. J., and Keefer, K. D. in Physics of Finely Divided Matter, Boccara, M. and Daoud, M., (Springer Verlag, New York, 1985) p. 31.CrossRefGoogle Scholar
7. Schaefer, D. W. and Keefer, K. D., Phys. Rev. Lett. 56, 2199 (1986).Google Scholar
8. Schaefer, D. W. and Keefer, K. D., Mat. Res. Soc. Symp. Proc. 32, 1 (1984).Google Scholar
9. Schaefer, D. W. and Keefer, K. D. in Fractals in Physics, edited by Pietronero, L. and Tosatti, E., (Elsevier, Amsterdam, 1986) p. 39.Google Scholar
10. Schaefer, D. W. and Keefer, K. D., Phys. Rev. Lett. 33, 1383 (1984).Google Scholar
11. Schaefer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S., Phys. Rev. Lett. 52, 2371 (1984).Google Scholar
12. Bale, H. D. and Schmidt, P. W., Phys. Rev. Lett. 53, 596 (1984).Google Scholar
13. Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (Wiley, New York, 1976).Google Scholar
14. Porod, G., Kolloid Z. 124, 83 (1951).Google Scholar
15. Cahn, J. W., Trans. Met. Soc. AIME 242, 166 (1968).Google Scholar
16. Schaefer, D. W., Bunker, B. C., and Wilcoxon, J. P. (to be published).Google Scholar
17. Martin, J. E., J. Appl. Cryst. 19, 25 (1986).Google Scholar
18. Martin, J. E. and Hurd, A. J., “Scattering from Fractals,” J. Appl. Cryst. XX, XX (1986).Google Scholar
19. Pfeiffer, P. and Avnir, D., J. Chem. Phys. 79, 3558 (1983).CrossRefGoogle Scholar
20. Ruland, W., J. Appl. Cryst. 4, 70 (1971).Google Scholar
21. Schaefer, D. W., Keefer, K. D., Aubert, J. H., and Rand, P. B., in Science of Chemical Processing, edited by Hench, L. L. and Ulrich, D. R. (J. Wiley, New York 1986).Google Scholar
22. Wong, P. Z., Phys. Rev. B 32, 7417 (1985).Google Scholar
23. Eden, M., Proc. 4th Berkeley Symposium on Math., Stat. and Prob., Neyman, F., Editor (University of California Press, Berkeley, 1961), Vol.4, p. 223.Google Scholar
24. Meakin, P., Ref. 2, p. 111.Google Scholar
25. Keefer, K. D., Mat. Res. Soc. Symp. Proc. 32, 15 (1984).CrossRefGoogle Scholar
26. Keefer, K. D., Viz. Vol.Google Scholar
27. Keefer, K. D. and Schaefer, D. W., Phys. Rev. Lett. 56, 2376 (1986).Google Scholar
28. Kelts, L. W., Efinger, N. J., and Melpolder, S. M., “Sol-gel Chemistry studied by 1H and 29Si NMR,” J. Coll. Int. Sci. XX, XXX (1986).Google Scholar
29. Brinker, C. J., Keefer, K. D., Schaefer, D. W., Ashley, C. S., J. Noncryst. Solids 48, 47, (1982).CrossRefGoogle Scholar
30. Stauffer, O., Introduction to Percolation Theory, (Taylor and Francis, London, 1985).Google Scholar
31. Stauffer, D., Ref. 2, p. 79.Google Scholar
32. Herrmann, H. J., Ref. 2, p. 3.Google Scholar
33. Stanley, H. E. in Structural Elements in Particle Physics and Stat. Mech., edited by Honerkamp, J., Pohlmeyer, K., and Romer, H. (Plenum, New York, 1982) p. 1.Google Scholar
34. Assink, R. A. and Kay, B. D., Mat. Res. Soc. Symp. Proc. 32, 301, (1984).Google Scholar
35. Kolb, M. and Jullien, R., J. Phys. Lett. (Orsay) 45, L977, (1984).Google Scholar
36. Brown, W. B. and Ball, R. C., J. Phys. A 18, L517 (1985).Google Scholar
37. Leyvraz, F., “Chemically Limited Cluster-Cluster-Aggregation and Lattice Animals”, Preprint.Google Scholar
38. Family, F., J. Phys. A 15, L583 (1983).Google Scholar
39. Martin, J. E., J. Phys. A 18, L207 (1985).Google Scholar
40. Meakin, P., Phys. Rev. Lett. 51, 119, (1983).Google Scholar
41. Kolb, M., Botet, R. and Jullien, R., Phys. Rev. Lett. 51, 1123, (1983).Google Scholar
42. Schaefer, D. W., Martin, J. E., Wiltzius, P., and Cannell, D. S. in Kinetics of Aggregation, edited by Family, F. and Landau, D. P., (North-Holland, New York, 1984).Google Scholar
43. Martin, J. E., Schaefer, D. W., and Hurd, A. J., Phys. Rev. A XX, XXX (1986).Google Scholar
44. Aubert, C. and Cannell, D. S., Phys. Rev. Lett. 56, 738 (1986).Google Scholar
45. Weitz, D. A., Huang, J. S., Lin, M. Y., and Sung, J., Phys. Rev. Lett. 53, 1416 (1985).Google Scholar
46. Wilcoxon, J. P., Martin, J. E., and Schaefer, D. W., in Mat. Res. Soc. Ext. Abs. Fractal Aspects of Materials, edited by Laibowitz, R. B., Mandelbrot, B. B., and Passoja, D. E. (Mat. Res. Soc., Pittsburgh, 1985) p.33.Google Scholar
47. Herrmann, D. W. and Klein, W., Phys. Rev. Lett. 50, 1062 (1983).Google Scholar
48. Klein, W., Phys. Rev. Lett. 47, 1569 (1981).Google Scholar
49. Desai, R. C. and Denton, A. R., ref. 2, p. 237.Google Scholar
50. Kotlarchyk, M., Chen, S.-H., and Huang, S., Phys. Rev. A 28, 508 (1983).Google Scholar
51. Hurd, A. J. and Schaefer, D. W., Phys. Rev. Lett. 54, 1043 (1985).Google Scholar