Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-18T08:45:29.518Z Has data issue: false hasContentIssue false

First-Principles Calculations of Positron Annihilation in Solids

Published online by Cambridge University Press:  15 February 2011

B. Barbiellini
Affiliation:
Physics Department, Northeastern University, Boston, Massachusetts 02115
M. Hakala
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
R. M. Nieminen
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
M. J. Puska
Affiliation:
Laboratory of Physics, Helsinki University of Technology, 02150 Espoo, Finland
Get access

Abstract

We present first-principles approaches based on density functional theory for calculating positron states and annihilation characteristics in condensed matter. The treatment of the electron-positron correlation effects (the enhancement of the electron density at the positron with respect to mean-field density) is shown to play a crucial role when calculating the annihilation rates. A generalized gradient approximation (GGA) takes the strong inhomogeneities of the electron density in the ion core region into account and reproduces well the experimental total annihilation rates (inverses of the positron lifetimes) by suppressing the rates given by a local density approximation (LDA). The GGA combined with an electron-state-dependent enhancement scheme gives a good description for the momentum distributions of the annihilating positron-electron pairs reproducing accurately the trends observed in the angular correlation (ACAR) or Doppler broadening measurements of the annihilation radiation. The combination of the present positron lifetime and momentum density calculations with the corresponding measurements yields a unique tool for defect identification. Especially, the investigation of various vacancy-type defects in semiconductors able to trap positrons will be an important field for these methods. We will show that the identification of vacancy-impurity complexes in highly n-Type Si and the study of the SiO2/Si interface are particularly interesting applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Krause-Rehberg, R. and Leipner, H. S., Positron Annihilation in Semiconductors, Springer Series in Solid-State Sciences, vol 127 (Springer Verlag, Berlin 1999).Google Scholar
2. Puska, M. J. and Nieminen, R. M., Rev. Mod. Phys 66, 841 (1994).Google Scholar
3. Jones, R.O. and Gunnarsson, O., Rev. Mod. Phys 61, 689 (1989).Google Scholar
4. Boronski, E. and Nieminen, R. N., Phys. Rev. B 34, 3820 (1986).Google Scholar
5. Bauer, G.E.W., Phys. Rev. B 27, 5912 (1983).Google Scholar
6. Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
7. Barbiellini, B., Puska, M. J., Torsti, T. and Nieminen, R. M., Phys. Rev. B 51, 7341 (1995).Google Scholar
8. Barbiellini, B., Puska, M. J., Korhonen, T., Harju, A., Torsti, T. and Nieminen, R. M., Phys. Rev. B. 53, 16201 (1996).Google Scholar
9. Alatalo, M., Barbiellini, B., Hakala, M., Kauppinen, H., Korhonen, T., Puska, M. J., Saarinen, K., Hautojärvi, P., and Nieminen, R. M., Phys. Rev. B 54, 2397 (1996).Google Scholar
10. Barbiellini, B., Hakala, M., Puska, M.J., Nieminen, R.M., and Manuel, A.A., Phys. Rev. B 56, 7136 (1997).Google Scholar
11. Boev, O. V., Puska, M. J., and Nieminen, R. M., Phys. Rev. B 36, 7786 (1987).Google Scholar
12. Mills, A.P. Jr., Positron Spectroscopy of Solids, edited by Dupasquier, A. and Mills, A.P. Jr., (IOS press, Amsterdam, 1995) pp. 209258.Google Scholar
13. Kuriplach, J. et al. , Phys. Rev. B 59, 1948 (1999).Google Scholar
14. Panda, B.K. and Brauer, G., Acta Polonica A 95, 641 (1999).Google Scholar
15. Ishibashi, S. et al. , Can J. Phys. 73, 534 (1995).Google Scholar
16. Ambigapathy, R., Manuel, A.A., Hautojäirvi, P., Saarinen, K. and Corbel, C., Phys. Rev. B 50, 2188 (1994).Google Scholar
17. Hakala, M., Puska, M. J., and Nieminen, R. M., Phys. Rev. B 57, 7621 (1998).Google Scholar
18. Saarinen, K., Nissilii, J., Kauppinen, H., Hakala, M., Puska, M. J., Hautojärvi, P., and Corbel, C., Phys. Rev. Lett. 82, 1883 (1999).Google Scholar
19. Kravchenko, S.V. et al. Phys. Rev. Lett. 77, 4938 (1996).Google Scholar
20. Altschuler, B.L. and Maslov, D.L., Phys. Rev. Lett. 82, 1145 (1999).Google Scholar
21. Kauppinen, H. et al. , J. Phys.: Condens Matter 9, p. 10595 (1997).Google Scholar