Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-19T21:33:59.726Z Has data issue: false hasContentIssue false

First Principles Simulations of Phase Stability in Stoichiometric and Doped LiMnO2

Published online by Cambridge University Press:  21 March 2011

Alexander I. Landa
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Chun-Chieh Chang
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Prashant N. Kumta
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890, U.S.A.
Blanka Magyari-Köpe
Affiliation:
Theoretical Physics, Royal Institute of Technology, SE-10044, Stockholm, Sweden
Levente Vitos
Affiliation:
Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology, SE-10044, Stockholm, Sweden
Rajeev Ahuja
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE- 75121, Uppsala, Sweden
Igor A. Abrikosov
Affiliation:
Condensed Matter Theory Group, Department of Physics, Uppsala University, Box 530, SE- 75121, Uppsala, Sweden
Get access

Abstract

The full charge density exact muffin-tin orbitals method has been used to study the stability of lithium-manganese oxides exhibiting different crystallographic allotropes. Calculations have been performed for ferromagnetic and antiferromagnetic phases of LiMnO2 as well as for the phase with local moment disorder. For the ordered LiMnO2 compound we reproduced the correct ground state, the antiferromagnetic orthorhombic structure. The effect of doping LiMnO2 by Co was considered with the aim to predict the stabilization of the layered structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hoppe, R., Brachtel, G. and Jansen, M., Z. Anorg. Chem., 417, 1 (1975).Google Scholar
2. Armstrong, A. R. and Bruce, P. G., Nature, 381, 499 (1996).Google Scholar
3. Vitins, G. and West, K., J. Electrochem. Soc., 144, 2587 (1997).Google Scholar
4. Bruce, P. G., Armstrong, A. R. and Gitzendanner, R. L., J. Mater. Chem., 9, 193 (1999).Google Scholar
5. Armstrong, A. R., Robertson, A. D. and Bruce, P. G., Electrochimica Acta, 45, 285 (1999).Google Scholar
6. Davidson, I. J., McMillan, R. S., Slerg, H., Luan, B., Kargina, I., Murray, J. J., and Swainson, I. P., J. Power Sources, 81–82, 406 (1999).Google Scholar
7. Chiang, Y.-M., Sadoway, D. R., Jang, Y.-I., Huang, B., and Wang, H., Electrochem. Solid- State Lett., 2, 107 (1999).Google Scholar
8. Mishra, S. K. and Ceder, G., Phys Rev. B, 59, 6120 (1999).Google Scholar
9. Ceder, G. and Mishra, S. K., Electrochem. Solid-State Lett., 2, 550 (1999).Google Scholar
10. Buta, S, Morgan, D., Ven, A. Van der, Aydinol, M. K., and Ceder, G., J. Electrochem. Soc., 146, 4335 (1999).Google Scholar
11. Greedan, J. E., Raju, N. P. and Davidson, I. J., J. Solid State Chem., 128, 209 (1997).Google Scholar
12. Tabuchi, M., Ado, K., Kobayashi, H., Kageyama, H., Marquelier, C., Kondo, A., and Kanno, R., J. Electrochem. Soc., 145, L49 (1998).Google Scholar
13. Andersen, O. K., Jepsen, O. and Krier, G., in Lectures on Methods of Electronic Structure Calculations, edited by Kumar, V., Andersen, O. K., and Mookerjee, A. (World Scientific, Singapore, 1994), p. 63.Google Scholar
14. Andersen, O. K., Arcangeli, C., Tank, R. W., Saha-Dasgupta, T., Krier, G., Jepsen, O., and Dasgupta, I., in Tight-Binding Approach to Computational Materials Science, edited by Turchi, P. E. A.. Gonis, A. and Colombo, L. (Mater. Res. Soc. Proc. 491, Pittsburgh, PA, 1998) pp. 334.Google Scholar
15. Vitos, L., Skriver, H. L., Johansson, B., and Kollár, J., Comput. Mater. Sci., 18, 24 (2000).Google Scholar
16. Perdew, J. and Wang, Y., Phys. Rev. B, 45, 13244 (1992).Google Scholar
17. Ceperley, D. M. and Alder, B. J., Phys. Rev. Lett., 45, 566 (1980).Google Scholar
18. Vitos, L., Kollár, J. and Skriver, H. L., Phys. Rev. B, 55, 13521 (1997).Google Scholar
19. Kollár, J., Vitos, L. and Skriver, H. L., in Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, edited by Dreyssé, H. (Springer-Verlag, Berlin, 2000), p. 85. Google Scholar
20. Vitos, L., Phys. Rev. B, 64, 033125 (2001).Google Scholar
21. Perdew, J. P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).Google Scholar
22. Vitos, L., Johansson, B., Kollár, J., and Skriver, H. L., Phys. Rev. B, 62, 10046 (2000).Google Scholar
23. Vitos, L., Abrikosov, I. A. and Johansson, B. (submitted to Phys. Rev. Lett).Google Scholar
24. Moruzzi, V. L., Janak, J. F. and Schwartz, K., Phys. Rev. B, 37, 790 (1988).Google Scholar
25. Singh, D. J., Phys. Rev. B, 55, 309 (1997).Google Scholar
26. Akai, H. and Dederichs, P. H., Phys. Rev. B, 47, 8739 (1993).Google Scholar