Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T19:46:54.359Z Has data issue: false hasContentIssue false

Fabrication of Rough Polymer Surfaces Exhibiting Anti-reflective Properties

Published online by Cambridge University Press:  27 February 2015

Srinadh Mattaparthi
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram-502205, Telangana, INDIA
Chandra S. Sharma
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Yeddumailaram-502205, Telangana, INDIA
Get access

Abstract

We have demonstrated some facile ways to fabricate the large area polymer surfaces with varying roughness followed by studying their anti-reflective properties. One of the approaches is based on electrospun nanofibers deposited on a substrate in an uneven non-woven matrix. This electrospun fabric was used as a master template to fabricate the negative replica of the fibers by soft lithography generating the roughness in polydimethylsiloxane (PDMS) surfaces. The second approach is based on biomimicking of flower petals. Petals are used as a master template to transfer surface features with hierarchical roughness over PDMS surface using replica moulding. As fabricated polymer surfaces with varied roughness have then tested for their anti-reflective properties using UV-VIS spectroscopy over a wide range of wavelengths and angles of incidence of light. These measurements show near zero reflection of patterned PDMS surfaces as compared to planar PDMS. This omnidirectional broadband anti-reflection behaviour of polymer surfaces can be used in wide variety of engineering applications including in solar cells.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Poitras, D., Dobrowolski, J. A., Appl. Opt. 43, 12861295 (2004).10.1364/AO.43.001286CrossRefGoogle Scholar
Deinega, A., Valuev, I., Potapkin, B., Lozovik, Y., J. Opt. Soc. Am. A 28,770777 (2011).10.1364/JOSAA.28.000770CrossRefGoogle Scholar
Willey, R. R., Appl. Opt. 50,C274C278 (2011).10.1364/AO.50.00C274CrossRefGoogle Scholar
Parker, A. R., Townley, H. E., Nat. Nanotechnol. 2, 347353 (2007).10.1038/nnano.2007.152CrossRefGoogle Scholar
Stavenga, D., Foletti, S., Palasantzas, G., Arikawa, K., Proc R Soc B. 273,661667(2006).10.1098/rspb.2005.3369CrossRefGoogle Scholar
Sweeney, A., Jiggins, C., Johnsen, S., S. Nature, 31, 423 (2003).Google Scholar
Potyrailo, R. A., Ghiradella, H., Vertiatchikh, A., Dovidenko, K., Cournoyer, J. R., Olson, E., Nat. Photonics 1, 123 (2007).10.1038/nphoton.2007.2CrossRefGoogle Scholar
Yan, Y. Y., Gao, N., N.; Barthlott, W., Advances in Colloid and Interface Science 169, 80105 (2011).10.1016/j.cis.2011.08.005CrossRefGoogle Scholar
Roach, P., Shirtcliffe, N. J., Newton, M. I., Soft Matter 4, 224240 (2008).10.1039/B712575PCrossRefGoogle Scholar
Qu, M., Zhang, B., Song, S., Chen, L., Zhang, J., Cao, X., Adv. Functional Mater. 17, 593596 (2007).10.1002/adfm.200600472CrossRefGoogle Scholar
Baumgarten, P. K., J. Colloid. Interface Sci. 36, 7179 (1971).10.1016/0021-9797(71)90241-4CrossRefGoogle Scholar
Greiner, A., Wendroff, J. H., Angew. Chem. Int. Ed. 46, 56705703 (2007).10.1002/anie.200604646CrossRefGoogle Scholar
Auzelyte, V., Flauraud, V., Cadarso, V. J., Kiefer, T., Brugger, J., J. Microelectronic Engg. 97, 269271 (2012).10.1016/j.mee.2012.03.013CrossRefGoogle Scholar
Mattaparthi, S., Sharma, C. S., Bioinspired, Biomimetics and Nanobiomaterials. 3(1), 49 (2013).10.1680/bbn.13.00015CrossRefGoogle Scholar
Riederer, M., Muller, C., “Biology of plant cuticle,” Annual Plant Reviews 23, (Blackwell Publishing, Oxford, UK, 2006).Google Scholar
Broderesen, C., Vogelmann, T., Am. J. of Botany 94, 10611066 (2007).10.3732/ajb.94.7.1061CrossRefGoogle Scholar