Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T19:45:15.278Z Has data issue: false hasContentIssue false

Fabrication of High Temperature Superconductor-Colossal Magnetoresistor Spin Injection Devices

Published online by Cambridge University Press:  10 February 2011

J. Kim
Affiliation:
Naval Research Laboratory, Washington, DC 20375
R. M. Stroud
Affiliation:
Naval Research Laboratory, Washington, DC 20375
R. C Y. Auyeung
Affiliation:
Naval Research Laboratory, Washington, DC 20375
C. R. Eddy
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. Koller
Affiliation:
Naval Research Laboratory, Washington, DC 20375
M. S. Osofsky
Affiliation:
Naval Research Laboratory, Washington, DC 20375
R. J. Soulen Jr
Affiliation:
Naval Research Laboratory, Washington, DC 20375
J. S. Horwitz
Affiliation:
Naval Research Laboratory, Washington, DC 20375
D. B. Chrisey
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

Trilayer YBa2Cu3O7-δ/(SrTiO3, CeO2)/La0.67Sr0.33MnO3-δ devices have been fabricated for the study of supercurrent suppression due to the injection of spin-polarized quasiparticle current. The critical current for a YBa2Cu3O7-δ/100 Å SrTiO3/La0.67Sr0.33MnO3-δ device was found to decrease from 118 mA to 12.6 mA, for an injection current of 60 mA. The effect of film microstructure on the critical current suppression was investigated. Defects in the SrTiO3 and CeO2 layers were found to control the device properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mannhart, J., Supercon. Sci. Tech. 9, p. 49 (1996).Google Scholar
2. Johnson, M. and Silsbee, R. H., Phys. Rev. B 77, p. 5326 (1988).Google Scholar
3. Johnson, M., Appl. Phys. Lett. 65, p. 1460 (1994).Google Scholar
4. Chrisey, D. B., Osofsky, M. S., Horwitz, J. S., Soulen, R. J. Jr, Woodfield, B., Byers, J., Daly, G. M., Dorsey, P. C., Pond, J. M., Clinton, T. W. and Johnson, M., IEEE Trans. Appl. Supercon. 7, p. 2067 (1997).Google Scholar
5. Was'ko, V. A., Larkin, V. A., Kraus, P. A., Nikolaev, K. R., Grup, D. E., Nordman, K. A. and Goldman, A. M., Phys. Rev. Lett. 78, p. 1134 (1997).Google Scholar
6. Stroud, R. M., Kim, J., Eddy, C. R., Chrisey, D. B., Horwitz, J. S., Koller, D., Osofsky, M. S., Soulen, R. J. Jr and Auyeung, R. C. Y., J. Appl. Phys,, in press.Google Scholar
7. Soulen, R. J., Osofsky, M. S., Chrisey, D. B., Horwitz, J. S., Stroud, R., Byers, J. M., Woodfield, B. F., Daly, G. M., Clinton, T. W., Johnson, M., Auyeung, R. C. Y., Proc. of 1997 European Conf. on Supercond., in press.Google Scholar
8. Dong, Z. W., Ramesh, R., Venkatesan, T., Johnson, M.,. Chen, Z. Y., Pai, S. P., Talyanski, V., Sharma, R. P., Shreekala, R., Lobb, C. J. and Greene, R. L., Appl. Phys. Lett. 71, p. 1718 (1997).Google Scholar