Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-18T10:33:44.639Z Has data issue: false hasContentIssue false

Evaluation of the effects of phenylalanine and carboxylate on the rheological behaviors of small molecule hydrogelators containing naphthalene

Published online by Cambridge University Press:  16 February 2012

Junfeng Shi
Affiliation:
Department of chemistry, Brandeis University, 415 South Street, MS 015, Waltham, MA 02453, USA
Yue Pan
Affiliation:
Department of chemistry, Brandeis University, 415 South Street, MS 015, Waltham, MA 02453, USA
Yuan Gao
Affiliation:
Department of chemistry, Brandeis University, 415 South Street, MS 015, Waltham, MA 02453, USA
Bing Xu
Affiliation:
Department of chemistry, Brandeis University, 415 South Street, MS 015, Waltham, MA 02453, USA
Get access

Abstract

By systematically altering the number and position of phenylalanine and carboxylate groups on a series of hydrogelators containing a naphthalene motif, we evaluated the correlation of molecular structures, self-assembly, and the rheological properties of the hydrogels. The storage moduli of the hydrogels decrease with the increase of the number of phenylalanine or with the insertion of a cysteine residue, and the effect of the carboxylic group on the rheological properties depends on the backbone of the hydrogelators. Transmission electron microscopy shows that these hydrogelators self-assemble in water to form nanofibers and result in threedimensional networks. Circular dichroism experiment indicates the hydrogelators self-assemble to form β-sheet-like structure within the nanofibers. This work suggests that control of the synergy of hydrogen bonding and aromatic-aromatic interactions may offer a feasible way to modulate the rheological properties of molecular hydrogels consisting of small molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Estroff, L.A. & Hamilton, A.D. Chem. Rev. 104, 1201 (2004).CrossRefGoogle Scholar
2. Smith, A.M. et al. . Adv. Mater. 20, 37 (2008).CrossRefGoogle Scholar
3. Capito, R.M., Azevedo, H.S., Velichko, Y.S., Mata, A. & Stupp, S.I. Science 319, 1812 (2008).CrossRefGoogle Scholar
4. Yang, Z., Liang, G. & Xu, B. Acc. Chem. Res. 41, 315 (2008).CrossRefGoogle Scholar
5. Adams, D.J. & Topham, P.D. Soft Matter 6, 3707 (2010).CrossRefGoogle Scholar
6. Li, X. et al. . J. Am. Chem. Soc., DOI: 10.1021/ja208456k (2011).Google Scholar
7. Li, X. et al. . Angew. Chem. Int. Ed. 50, 9365 (2011).CrossRefGoogle Scholar
8. Gao, J. et al. . J. Am. Chem. Soc. 131, 11286 (2009).CrossRefGoogle Scholar
9. Ulijn, R.V. & Smith, A.M. Chem. Soc. Rev. 37, 664 (2008).CrossRefGoogle Scholar
10. Smith, A.M. et al. . Adv. Mater. 20, 37 (2008).CrossRefGoogle Scholar
11. Bhowmik, S., Banerjee, S. & Maitra, U. Chem. Commun. 46, 8642 (2010).CrossRefGoogle Scholar
12. Chen, J. & McNeil, A.J. J. Am. Chem. Soc. 130, 16496 (2008).CrossRefGoogle Scholar
13. van Bommel, K.J.C. et al. . Angew. Chem. Int. Ed. 43, 1663 (2004).CrossRefGoogle Scholar
14. Kisiday, J. et al. . Proc. Natl. Acad. Sci. U.S.A. 99, 9996 (2002).CrossRefGoogle Scholar
15. Tibbitt, M.W. & Anseth, K.S. Biotechnol. Bioeng. 103, 655 (2009).CrossRefGoogle Scholar
16. Zhou, M. et al. . Biomaterials 30, 2523 (2009).CrossRefGoogle Scholar
17. Wang, W.J. et al. . Carbohydr. Res. 346, 1013 (2011).CrossRefGoogle Scholar
18. Banwell, E.F. et al. . Nat. Mater. 8, 596 (2009).CrossRefGoogle Scholar
19. Sutton, S. et al. . Langmuir 25, 10285 (2009).CrossRefGoogle Scholar
20. Vemula, P.K., Li, J. & John, G. J. Am. Chem. Soc. 128, 8932 (2006).CrossRefGoogle Scholar
21. Gao, Y. et al. . J. Am. Chem. Soc. 131, 13576 (2009).CrossRefGoogle Scholar
22. Naskar, J., Palui, G. & Banerjee, A. J. Phys. Chem. B 113, 11787 (2009).CrossRefGoogle Scholar
23. Banerjee, S., Das, R.K. & Maitra, U. J. Mater. Chem. 19, 6649 (2009).CrossRefGoogle Scholar
24. Gawel, K., Barriet, D., Sletmoen, M. & Stokke, B.T. Sensors 10, 4381 (2010).CrossRefGoogle Scholar
25. Drury, J.L. & Mooney, D.J. Biomaterials 24, 4337 (2003).CrossRefGoogle Scholar
26. Lee, K.Y. & Mooney, D.J. Chem. Rev. 101, 1869 (2001).CrossRefGoogle Scholar
27. Slaughter, B.V., Khurshid, S.S., Fisher, O.Z., Khademhosseini, A. & Peppas, N.A. Adv. Mater. 21, 3307 (2009).CrossRefGoogle Scholar
28. Discher, D.E., Janmey, P. & Wang, Y.L. Science 310, 1139 (2005).CrossRefGoogle Scholar
29. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Cell 126, 677 (2006).CrossRefGoogle ScholarPubMed
30. Adams, D.J., Mullen, L.M., Berta, M., Chen, L. & Frith, W.J. Soft Matter 6, 1971 (2010).CrossRefGoogle Scholar
31. van Esch, J.H. Langmuir 25, 8392 (2009).CrossRefGoogle Scholar
32. Burley, S.K. & Petsko, G.A. Science 229, 23 (1985).CrossRefGoogle Scholar
33. Ma, M.L. et al. . J. Am. Chem. Soc. 132, 2719 (2010).CrossRefGoogle Scholar
34. Yang, Z.M., Liang, G.L., Ma, M.L., Gao, Y. & Xu, B. J. Mater. Chem. 17, 850 (2007).CrossRefGoogle Scholar
35. Shi, J.F., Gao, Y.A., Yang, Z.M. & Xu, B. Beilstein J. Org. Chem. 7, 167 (2011).CrossRefGoogle Scholar
36. Chen, L. et al. . Langmuir 26, 5232 (2010).CrossRefGoogle Scholar
37. Zhang, Y., Kuang, Y., Gao, Y.A. & Xu, B. Langmuir 27, 529 (2011).CrossRefGoogle Scholar
38. Levitt, M. Biochemistry 17, 4277 (1978).CrossRefGoogle Scholar
39. Kates, Steven A., F.A. Solid Phase Synthesis: A Practical Guide ;. (Marcel Dekker, New York; 2000.).Google Scholar
40. Zhao, F., Gao, Y.A., Shi, J.F., Browdy, H.M. & Xu, B. Langmuir 27, 1510 (2011).CrossRefGoogle Scholar
41. Wang, Z.H. et al. . Chem. Commun. 47, 8901 (2011).CrossRefGoogle Scholar
42. Bose, P.P., Das, A.K., Hegde, R.P., Shamala, N. & Banerjee, A. Chem. Mater. 19, 6150 (2007).CrossRefGoogle Scholar
43. Boekhoven, J. et al. . Angew. Chem. Int. Ed., 1 (2011).Google Scholar
44. Johnson, W.C. Proteins-Structure Function and Genetics 7, 205 (1990).CrossRefGoogle Scholar
45. Behanna, H.A., Donners, J., Gordon, A.C. & Stupp, S.I. J. Am. Chem. Soc. 127, 1193 (2005).CrossRefGoogle Scholar