Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T11:40:54.326Z Has data issue: false hasContentIssue false

Estimation of Back Stress Produced by Dislocation Interaction in Icosahedral Al-Pd-Mn

Published online by Cambridge University Press:  17 March 2011

Hisatoshi Hirai
Affiliation:
Kyushu National Industrial Research Institute, Tosu, Saga 841-0052, Japan
Akira Kitahara
Affiliation:
Kyushu National Industrial Research Institute, Tosu, Saga 841-0052, Japan
Fuyuki Yoshida
Affiliation:
Kyushu University, Graduate School of Engineering Science, Kasuga, Fukuoka 816-0811, Japan
Hideharu Nakashima
Affiliation:
Kyushu University, Graduate School of Engineering Science, Kasuga, Fukuoka 816-0811, Japan
Get access

Abstract

We attempted to calculate the breakaway stress σb of dislocation from attractive junction made by reaction of dislocations. Assuming that the force f acting on the unit length of dislocation with the Burgers vector B under a shear stress τa is f τ∣b˝∣ where b˝ is the phonon component of B, and that the elastic energy per unit length of dislocation W is approximated by W = G(∣b˝∣2 + c2 ∣b˔∣2) where G is the shear modulus, b˔ the phason component of B and c2 a coefficient of about 3.1 × 10−3. Using the values G = 48.4 GPa at 1070 K, the Taylor factor M = 3 and the measured dislocation density of 1.8 × 1013 m−2, we calculated σb for 21 possible dislocation reactions. Picking up the most possible dislocation reactions, σb distributed between 50 and 80 MPa, and the average of them was 64 MPa. This result strongly suggested the possibility that the main part of the internal stress of the high-temperature deformation of icosahedral Al-Pd-Mn is explained by σb.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wollgarten, M., Beyss, M., Urban, K., Liebertz, H. and Koster, U., Phys. Rev. Lett., 71, 549 (1993).Google Scholar
2. Feuerbacher, M., Metzmacher, C., Wollgarten, M., Urban, K., Baufeld, B., Bartsch, M. and Messerschmidt, U., Mater. Sci. Eng., A233, 103 (1997).Google Scholar
3. Urban, K., Feuerbacher, M., Wollgarten, M., Bartsch, M. and Messerschmidt, U., in Physical Properties of Quasicrystals, edited by Stadnik, Z. M. (Springer-Verlag, Berlin, 1999), pp. 361401.Google Scholar
4. Kikuchi, S., Motoyama, Y. and Adachi, M., J. Jpn. Inst. Light Metals, 30, 449 (1980).Google Scholar
5. Hirai, H., Tomita, T., Yoshida, F., Nakashima, H., in Quasicrystals, edited by Dubois, J.-M., Thiel, P. A., Tsai, A.-P. and Urban, K., (Mater. Res. Soc. Proc. 553, Warrendale, PA, 1999) pp. 331336.Google Scholar
6. Wang, R., Feuerbacher, M., Wollgarten, M. and Urban, K., Phil. Mag. A, 77, 523 (1998).Google Scholar
7. Rosenfeld, R., Feuerbacher, M., Baufeld, B., Bartsch, M., Wollgarten, M., Hanke, G., Beyss, M., Messerschmidt, U. and Urban, K., Phil. Mag. Lett., 72, 375 (1995).Google Scholar
8. Cahn, J. W., Shechtman, D. and Gratias, D., J. Mater. Res., 1, 13 (1986).Google Scholar
9. Wollgarten, M., Metzmacher, C., Rosenfeld, R. and Feuerbacher, M., Phil. Mag. A, 76, 455 (1997).Google Scholar
10. Jeong, H.-C. and Steinhardt, P. J., Phys. Rev. B, 48, 9394 (1993),Google Scholar
11. Carrington, W., Hale, K. F. and McLean, D., Proc. Roy. Soc., A259, 203 (1960).Google Scholar
12. Tanaka, K., Mitarai, Y. and Koiwa, M., Phil. Mag. A, 73, 1715 (1996).Google Scholar