Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T15:18:48.237Z Has data issue: false hasContentIssue false

Epitaxial Silicon on Yttria-Stabilized Cubic Zirconia (YSZ) and Subsequent Oxidation of the Si/YSZ Interface

Published online by Cambridge University Press:  26 February 2011

L. M. Mercandalli
Affiliation:
Thomson-CSF/LCR,Domaine de Corbeville,B.P.10,91401 Orsay Cedex,France
D. Pribat
Affiliation:
Thomson-CSF/LCR,Domaine de Corbeville,B.P.10,91401 Orsay Cedex,France
M. Dupuy
Affiliation:
LETI/CRM, 85X, 38041 Grenoble Cedex,France.
C. Arnodo
Affiliation:
Thomson-CSF/LCR,Domaine de Corbeville,B.P.10,91401 Orsay Cedex,France
D. Rondi
Affiliation:
Thomson-CSF/LCR,Domaine de Corbeville,B.P.10,91401 Orsay Cedex,France
D. Dieumegard
Affiliation:
Thomson-CSF/LCR,Domaine de Corbeville,B.P.10,91401 Orsay Cedex,France
Get access

Astract

(100) single crystal silicon films have been deposited onto (100) oriented Yttria-Stabilized Zirconia (YSZ) substrates by pyrolysis of SiH4 at ∼ 980°C.

The as deposited epitaxial silicon films have been characterized by Reflexion High Energy Electron Diffraction and Transmission Electron Microscopy techniques.

The as deposited silicon films have also been oxidized by oxygen transport through the substrate, resulting in a Si(100)/ amorphous SiO2/YSZ(100) structure in which the most defective part of the epitaxial silicon deposit has been eliminated. The oxidized interfaces (with SiO2 thicknesses in the 2000 Å range) have then been characterized by Transmission Electron Microscopy in order to assess the improvement in crystalline quality. Electrical measurements have also been performed on MOS-Hall bar structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Golecki, I., Manasevit, H.M., Moudy, L.A., Yang, J.J. and Mee, J.E., Appl. Phys. Lett. 42 (1983) 501.Google Scholar
2. Loebs, V.A., Haas, T.W. and Solomon, J.S., J. Vac. Sci. Technol. Al (1983) 596.Google Scholar
3. Manasevit, H.M., Golecki, I., Moudy, L.A., Yang, J.J. and Mee, J.E., J. Electrochem. Soc. 130 (1983) 1752.CrossRefGoogle Scholar
4. Pribat, D., Mercandalli, L.M., Siejka, J. and Perri~re, J., submitted to J.Appl. Phys.Google Scholar
5. Pribat, D., Mercandalli, L.M., Croset, M., Dieumegard, D. and Siejka, J., Mat. Lett. 2 (A and B) (1984) 524.CrossRefGoogle Scholar
6. Golecki, I. in:Proceedings of the Symposium on Comparison of Thin Film Transistors and SOI Technologies, 1984 Spring Meeting of the MRS. Albuquerque, N.M., February 1984.Google Scholar
7. Dupuy, M., J. Microsc. Spectrosc. Electron. 9 (1984) 163.Google Scholar
8. Abrahams, M.S., Hutchison, J.L. and Booker, G.R., Phys. Stat. Sol. (a) 63 (1981) K3; M.S. Abrahams and C.J. Buiocchi, Appl. Phys. Lett. 27 (1975) 325.Google Scholar
9. Möller, H.J., Philo. Mag. A, 43 (1981) 1045.CrossRefGoogle Scholar