Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-21T14:12:26.107Z Has data issue: false hasContentIssue false

Epitaxial Growth of CoSi2/Si Hetero-Structure by Solid State Interaction of Co/Ti/Si Multilayer

Published online by Cambridge University Press:  25 February 2011

Bing-zong Li
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Wei-Jun Wu
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Kai Shao
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Zhi-Guang Gu
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Guo-Bao Jiang
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Wei-Ning Huang
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Hua Fang
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Zhen Sun
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China
Ping Liu
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Science, Shanghai 200050, China
Zu-Yao Zhou
Affiliation:
Dept. of Electronic Engineering, Fudan University, Shanghai 200433, China Ion Beam Laboratory, Shanghai Institute of Metallurgy, Chinese Academy of Science, Shanghai 200050, China
Get access

Abstract

A new method of epitaxial growth of CoSi2 film on Si substrate by ternary solid state interaction is investigated. XRD, RBS and TEM show that single-crystalline CoSi2 can be formed on both Si (111) and (100) substrates by using Co/Ti/Si or TiN/Co/Ti/Si multilayer. The evolution of multilayer structure and its resistivity is studied and epitaxy mechanism is discussed. Experimental results indicate strong affinity between Co and Si. During the ternary interaction the epitaxial CoSi2 can be grown directly on Si and its growth may behave as a diffusion controlled process. The thickness of Ti layer and the annealing procedure have important effect on CoSi2 epitaxial growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Murark, S.P., Silicide for VLSI Application (Academic Press, New York, 1983)Google Scholar
2 Nicolet, Marc-A. and Lau, S.S., in VLSI Electronics Microstructure Science V.6, edited by Einspruch, N.G. and Larrabee, G.B. (Academic Press, New York, 1983) pp.329464 Google Scholar
3 Chen, L.J. and Tu, K.N., Materials Science Report, 6 (2,3) 53 (1991)Google Scholar
4 Tung, R.T., J. Vac. Sci. Technol. A7 (3), 598 (1989)Google Scholar
5 Kao, Y.C., Tejwani, M., Xie, Y.H., Lin, T.L. and Wang, K.L., J. Vac. Sci. Technol. B3 (2), 596 (1985)CrossRefGoogle Scholar
6 Rajan, K., Hsiung, L.M., Jimenez, J.R., Schowalter, L.J., Ramanathan, K.V., Thompson, R.D. and Lyer, S.S., J. Appl. Phys. 70 (9) 4853 (1991)CrossRefGoogle Scholar
7 Bulle-lieuwma, C.W.T., Vandenhoudt, D.E.W., Henz, J., Onda, N., and H.Von, Kanel, .]. Appl.Phys. 73 (7), 3220 (1993)Google Scholar
8 White, A.E., Short, K.T., Dynes, R.C., Gibson, J.M., and Garno, J.P., Appl. Phys. Lett. 50, 95 (1987)Google Scholar
9 Vandenberg, J.M., White, A.E., Hull, R., Short, K.T., and Yalisove, S.M., J. Appl. Phys. 6 7 (2), 787 (1990)Google Scholar
10 Witzmann, A., Schippel, S., Zentgraf, A. and Gajduk, P.I., J. Appl. Phys. 73 (11), 7250 (1993)Google Scholar
11 Ishibashi, K. and Frukawa, S., Jpn. J. Appl. Phys. 24 (8), 912 (1985); IEEE Trans. Electron Devices, 33 (3), 332 (1986)CrossRefGoogle Scholar
12 Wei, C.S., Fraser, D.B., Lawrence, M., Dass, A. and Brat, T. VMIC-90 Proc. 233 (1990)Google Scholar
13 Lawrence, M., Dass, A., Fraser, D.M. and Wei, C.S., Appl. Phys. Lett. 58 (12) 1308 (1991); MRS Proc. 221, 193 (1991)Google Scholar
14 Hsia, S.L., Tan, T.Y., Smith, P. and McGuire, G.E., J. Appl. Phys. 70 (12), 7579 (1991); 72 (5), 1864 (1992); 1993 MRS Fall MeetingGoogle Scholar
15 Hong, F., Rozgonyi, G.A. and Patnaik, B., Appl. Phys. Lett. 61 (13) 1519 (1992); MRS Proc. 238, 587 (1992)Google Scholar
16 Li, B.Z., Liu, P., Sun, Z., Gu, Z.G., Huang, W.N., Jiang, G.B., Hong, F. and Rozgonyi, G.A., VMIC-92 Proc. 304 (1992)Google Scholar
17 Li, B.Z., Sun, Z., Liu, P., Gu, Z.G., Huang, W.N., Wu, W.J., Hong, F. and Rozgonyi, G.A.. VMIC-93 Proc. 381 (1993)Google Scholar
18 Liu, P., Li, B.Z., Sun, Z., Gu, Z.G., Huang, W.N., Zhou, Z.Y., Ni, R.S., Lin, C.L., Zou, S.C., Hong, F. and Rozgonyi, G.A., J. Appl. Phys. 74 (3) 1700 (1993)Google Scholar
19 Hong, F., Patnaik, B., Rozgonyi, G.A., Li, B.Z., Liu, P. and Sun, Z., MRS Proc. 280 (1992); Proc.3rd ICSICT, 83 (1992), Beijing, China; MRS proc. 311 (1992)Google Scholar
20 Lauwers, A., Vercaemst, A., M.Van, Hove, K.Kyllesbech, Larsen, Verbeeck, R., R.Van, Meirhaeghe, Maex, K. and M.Van, Rossum, Presented at the 1993 MRS Fall Meeting, Boston,MA.Google Scholar
21 Sinclair, R. and Konno, T.J., presented at the 1993 MRS Fall Meeting, Boston, MA (1993)Google Scholar
22 Lau, S.S., Mayer, J.W. and Tu, K.N., J. Appl. Phys. 49, 4005 (1978)Google Scholar
23 Miura, H., Ma, E. and Thompson, C.V., J. Appl. Phys. 70 (8), 4287 (1991)Google Scholar
24 Veuillen, J.Y., Derrien, J., Badoz, P.A., Rosencher, E. and d’Anterroches, C., Appl. Phys. Lett. 51(18), 1448 (1987)Google Scholar
25 d’Heurle, F.M. and Gas, P., J. Mater. Res. 1(1), 205 (1986)Google Scholar
26 Jan, C.H., Chen, C.P. and Chang, Y.A., J. Appl. Phys. 73 (3), 1168 (1993)Google Scholar