Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T23:12:05.340Z Has data issue: false hasContentIssue false

Electronic Energy Bands in γ-InSe with and without Intercalated Lithium

Published online by Cambridge University Press:  28 February 2011

P. Gomes Da Costa
Affiliation:
Institute for Surface and Interface Science and Department of Physics, University of California, Irvine, CA 92717
M. Balkanski
Affiliation:
Laboratoire de Physique des Solides, CNRS 154, Université Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cédex 05, France
R. F. WALLIS
Affiliation:
Institute for Surface and Interface Science and Department of Physics, University of California, Irvine, CA 92717
Get access

Abstract

The effect of intercalated lithium on the electronic band structure of the γ-polytype of InSe has been investigated using a tight-binding method. The energy bands of the pure polytype were calculated and the results compared with previous work. The modifications of the energy bands produced by the introduction of one lithium atom per unit cell were calculated for the lowest potential energy position of the lithium atom in the Van der Waals gap between layers. The results for the changes in the smallest and next-to-smallest direct band gaps are compared with experimental data. An interpretation of a photoluminescence peak produced by lithium intercalation is given.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balkanski, M., Julien, C., and Emery, J. Y., J. Power Sources 26, 615 (1989).Google Scholar
2. Hatzikraniotis, E., Julien, C., and Balkanski, M., NATO ASI Series E101 (Martimes Nijhoff Publ., Amsterdam, 1985), p. 479.Google Scholar
3. Julien, C., Hatzikraniotis, E., Paraskevopoulos, K. R., Chevy, A., and Balkanski, M., Solid State Ionics 18–19, 859 (1986).Google Scholar
4. Balkanski, M., Julien, C., and Jouanne, M., J. Power Sources 20, 213 (1987).CrossRefGoogle Scholar
5. Kunc, K., Zeyher, R., and Molinari, E., Proc. 19th Int. Conf. Phys. Semiconductors, Warsaw, 1988, edited by Zawadzki, W. (Inst. of Physics, Polish Acad. Sci., wroclaw, 1988), p. 1119.Google Scholar
6. Kunc, K. and Zeyher, R., Europhys. Lett. 7, 611 (1988).CrossRefGoogle Scholar
7. Piacentini, M., Doni, E., Cirlanda, R., Grasso, V., and Balzarotti, A., Il Nuovo Cimento B54 (1), 269 (1979).Google Scholar
8. Burret, P. A., Thesis, Paris, 1989.Google Scholar
9. Julien, C., Jouanne, M., Burret, P. A., and Balkanski, M., Solid State Ionics, 28–30, 1167 (1988).CrossRefGoogle Scholar
10. Jouanne, M., Julien, C.. Beserman, R., and Balkanski, M., Phys. Scripta 38, 471 (1988).Google Scholar
11. Doni, E., Girlanda, R., Grasso, V., Balzarotti, A., and Piacentini, M., Il Nuovo Cimento 51 (1), 154 (1979).CrossRefGoogle Scholar
12. Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
13. Clementi, E. and Roetti, C., Atomic Data and Nuclear Data Tables 14, 177 (1974).Google Scholar
14. Slater, J. C., Quantum Theory of Molecules and Solids, Vol. 2 (McGraw-Hill, New York, 1965).Google Scholar