Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T05:15:16.659Z Has data issue: false hasContentIssue false

The Effects of Cu on Field Aided Lateral Crystallization (FALC) of Amorphous Silicon (a-Si) Films

Published online by Cambridge University Press:  17 March 2011

Jae-Bok Lee
Affiliation:
Department of Ceramic Engineering, Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, KOREA
Chul-Ho Kim
Affiliation:
Department of Ceramic Engineering, Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, KOREA
Se-Youl Kwon
Affiliation:
Department of Ceramic Engineering, Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, KOREA
Duck-Kyun Choi
Affiliation:
Department of Ceramic Engineering, Hanyang University 17 Haengdang-dong, Seongdong-ku, Seoul 133-791, KOREA
Get access

Abstract

A novel concept of field aided lateral crystallization (FALC) and the effects of Cu on FALC of amorphous silicon (a-Si) were investigated. Cu was found to induce the lateral crystallization toward a metal-free region as well as the crystallization of a-Si in contact with Cu. In particular, the lateral crystallization caused by Cu was noticeably accelerated at the negative electrode side in every pattern with an aid of electric field, while it was retarded at the positive electrode side. The occurrence of Cu-FALC phenomenon was interpreted in terms of dominant diffusing species (DDS) in the reaction between metal and Si. The FALC velocity increased with the applied field intensity and the annealing temperature. The crystallization of a-Si was achieved at temperatures as low as 375°C when the annealing time increased in the presence of high electric field, above 30V/cm. Therefore, we could demonstrate the possibility of low temperature (<500°C) polycrystalline silicon (poly-Si) crystallization using Cu as a mediator in FALC technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964)10.1063/1.1753975Google Scholar
2. Lee, S. W., Jeon, Y. C. and Joo, S. K., Appl. Phys. Lett. 66, 1671 (1995)10.1063/1.113888Google Scholar
3. Lee, S. W. and Joo, S. K., IEEE Electron Device Lett. 17, 160 (1996)Google Scholar
4. Hayzelden, C. and Bastone, J. L. L., J. Appl. Phys. 73, 8279 (1993)10.1063/1.353446Google Scholar
5. Park, S. H., Jun, S. I., Song, K. S., Kim, C. K. and Choi, D. K., Jpn. J. Appl. Phys. 38, L108 (1999)Google Scholar
6. Song, K. S., Lee, J. B., Jun, S. I., Choi, D. K. and Park, S. K., J. Mat. Sci. Lett. 18, 1209 (1999)10.1023/A:1006698101609Google Scholar
7. Jun, S. I., Yang, Y. H., Lee, J. B. and Choi, D. K., Appl. Phys. Lett. 75, 2235 (1999)Google Scholar
8. Lee, C. J., Lee, J. B., Chung, Y. C. and Choi, D. K., Jpn. J. Appl. Phys. 39, 6191 (2000)Google Scholar
9. Russell, S. W., Li, J. and Mayer, J. W., J. Appl. Phys. 70, 5153 (1991)10.1063/1.348995Google Scholar
10. Stolt, L. and D'Heurle, F. M., Thin Solid Films 189, 269 (1990)Google Scholar
11. Chu, W. K., Lau, S. S., Mayer, J. W., Muller, H. and Tu, K. N., Thin Solid Films 28, 393 (1982)Google Scholar
12. d'Heurle, F., Petersson, S., Stolt, L. and Stritzker, B., J. Appl. Phys. 53, 5678 (1982)10.1063/1.331453Google Scholar
13. Lien, C. D., Nicolet, M. A. and Pai, C. S., J. Appl. Phys. 57, 224 (1985)Google Scholar
14. Nakashima, K., Iwami, M. and Hiraki, A., Thin Solid Films 25, 423 (1975)10.1016/0040-6090(75)90060-7Google Scholar
15. Price, I. E. and Berthoud, I. A., Solid State Electron. 16, 1303 (1973)10.1016/0038-1101(73)90088-9Google Scholar
16. Affolter, K., Zhao, X. A. and Nicolet, M. A., J. Appl. Phys. 58, 3087 (1985)Google Scholar