Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T01:41:50.413Z Has data issue: false hasContentIssue false

Effect of Substitutional or Chemisorbed Nitrogen on the Diamond (100) Growth Process

Published online by Cambridge University Press:  31 January 2011

Karin Larsson*
Affiliation:
karin.larsson@mkem.uu.se
Get access

Abstract

The present paper outlines the energetic and kinetic effect by substitutional N, or by coadsorbed NHx (x =1, 2), on one of the key growth steps in the CVD growth mechanism of diamond (100); H abstraction by gaseous H radical species from the (100) surface plane. Theoretical calculations were performed based on Density Functional Theory under periodic boundary conditions. Substitutionally positioned N was shown to have a large effect on the H abstraction process. The H abstraction energy from the diamond surface was greatly improved with N positioned in C layer 2. In order to outline the effect by N on the growth rate, the barriers of energies were calculated. The barrier of abstraction was shown to substantially decrease with N substitutionally positioned in the second C layer, leading to an improvement of the abstraction reaction rate by approximately a factor of 3.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Silva, F., Bonnin, X., Achard, J., Brinza, O., Michau, A. and Gicquel, A., J. Crystal Growth 310, 187 (2008).Google Scholar
2 , D. G., Goodwin, and Butler, J.E., “Theory of diamond chemical vapor deposition”, Handbook of industrial diamonds and diamond films, ed. Prelas, M.A., Popovici, G. and Bigelow, L.K. (New York, NY: Marcel Dekker, Inc. 1997) pp. 527581.Google Scholar
3 Wild, C., Kohl, R., Herres, N., Müller-Sebert, W. and Koidl, P., Diam. Rel. Mater. 373381, 3 (1994).Google Scholar
4 Locher, R., Wild, C., Herres, N., Behr, D. and Koidl, P., Appl. Phys. Lett. 65, 34 (1994).Google Scholar
5 Achard, J., Silva, F., Brinza, O., Tallaire, A. and Gicquel, A., Diam. Rel. Mater. 16, 685 (2007).Google Scholar
6 Frauenheim, Th., Jungnickel, G., Sitch, P., Kaukonen, M., Weich, F., Widany, J. and Porezag, D., Diam. Rel. Mater. 7, 348 (1998).Google Scholar
7 Harris, S. J. and Goodwin, D. G., J. Phys. Chem. 97, 2 (1993).Google Scholar
8 Garrison, B. J., Dawnkaski, E. J., Srivastava, D. and Brenner, D. W., Science 255, 835 (1992).Google Scholar
9 Larsson, K. and Carlsson, J.-O., Phys. Status Solidi A 186, 319 (2001).Google Scholar
10 Regemorter, T. Van and Larsson, K., J. Phys. Chem. A 113, 3274 (2009).Google Scholar
11 Regemorter, T. Van and Larsson, K., Diam. Rel. Mater. 18, 1152 (2009).Google Scholar
12 Regemorter, T. Van and Larsson, K., J. Phys. Chem. A 112, 5429 (2008).Google Scholar
13 Hohenberg, P., , P. And Kohn, W., Physical Review B 136, 136 (1964).Google Scholar
14 Kohn, W., , W. And Sham, L., Phys. Rev. A 140, 1133 (1964).Google Scholar
15 Perdew, J., and Wang, Y., Phys. Rev. B 45, 13244 (1992).Google Scholar
16 Ziesche, P., Kurth, S., and Perdew, J., Computational Materials Science 11, 122 (1998).Google Scholar
17 Perdew, J., Chevary, J., Vosko, S., Jackson, K., Pederson, M., Singh, D. and Fiolhais, C., Phys. Rev. B 46, 6671 (1992).Google Scholar
18 Teter, M., Payne, M., and Allan, D., Phys. Revs B 40, 12255 (1989).Google Scholar
19 Monkhorst, H., and Pack, J., Phys. Rev. B 13, 5188 (1976).Google Scholar
20 Fischer, T., and Almlof, J., J. Phys. Chem 96, 9768 (1992).Google Scholar
21 Segall, M., Shah, R., Pickard, C. and Payne, M., Phys. Rev, B 54, 23 (1996).Google Scholar
22 Larsson, K. and Carlsson, J.-O., Phys. Rev. B 59, 8315 (1999).Google Scholar
23 Regemorter, T. Van and Larsson, K., Chem. Vap. Dep. 14, 224 (2008).Google Scholar