Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T09:32:07.489Z Has data issue: false hasContentIssue false

Effect of Interdiffusion on the Subbands in an In0.65Gs0.35As/GaAs Multiple-quantum well Structure on GaAs Substrate at 1.55μm Operation Wavelength

Published online by Cambridge University Press:  10 February 2011

M. C. Y. Chan
Affiliation:
Department of Electrical & Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
E. Herbert Li
Affiliation:
Department of Electrical & Electronic Engineering, University of Hong Kong, Pokfulam Road, Hong Kong
K. S. Chan
Affiliation:
Department of Physics and Materiads Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
Get access

Abstract

Analysis of high indium concentration in interdiffused In0.65Gs0.35As/GaAs multiple quantum well (MQW) structure on GaAs Substrate is being studied. This material can achieve operating wavelengths around 1.5gtm Ifor applications in fiber optics communications. The large lattice mismatch problem (over 4.5% in this study) can be solved by using a linearly-graded InGaAs buffer layer for reducing any dislocation between the adjacent layers. Interdiffusion in the MQW structure can modify the composition profile in order to tailor the optical absorption and refraction properties. Results show that this system can have promising device performance operates at around 1.55μm and which base on the more matured and reliable GaAs technology.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miller, D.A.B., Chemla, D. S., Damen, T.C., Gossard, A.C., Wiegmann, W., Wood, T.H., and Burrus, C.A., Phys.Rev.Lett. 53, 2173 (1984)Google Scholar
2. likawa, F., Motisuke, P., Brum, J.A., Sacilott, M.A., Roth, A.P., and Masut, R.A., J.Cryst. Growth 93, 336 (1988)Google Scholar
3. Camras, M.D., Holonyak, N., Jr., Burnham, R.D., Streifer, W., Scifres, D.R., Paoli, T.L., and Lindstrom, C., J.Appl.Phys. 54, 5637 (1983)Google Scholar
4. Furtado, M.T., Loural, M.S.S., Sato, E.A., and Sacilotti, M.A., Semicon. Sci Technol. 7, 744 (1992)Google Scholar
5. Deppe, D.G. and Holonyal, N., Jr., J.Appl. Phys. 64, R93 (1988)Google Scholar
6. Li, E.H., Micallef, J., and Weiss, B.L., Jpn.J.Appl.Phys. 31, L7 (1992)Google Scholar
7. Micallef, J., Li, E.H., and Weiss, B.L., Superlattices and Microstructure 13, 125 (1993)Google Scholar
8. Micallef, J., Li, E.H., and Weiss, B.L., J.Appl. Phys. 62, 3164 (1993)Google Scholar
9. Matthews, J.W. and Blakeslee, A.E., J.Cryst.Growth 27, 118 (1974)Google Scholar
10. Asai, H. and Oe, K., J.Appl.Phys. 54, 2052 (1983)Google Scholar
11. Crank, J., The Mathematics of Diffusion, 2nd edition, Oxford University, Oxford, 1975, pp. 15 Google Scholar
12. Daniel, D.J.Ben and Duke, C.B., Phys.Rev. 152, 638 (1966)Google Scholar
13. Bastard, G., Acta Electron. 25, 147 (1983)Google Scholar
14. Ralston, J.D., O'Brien, S., Wicks, G.W., and Eastman, L.F., Appl.Phys.Lett. 52, 1511 (1988)Google Scholar
15. Chan, K.S., J.Phys.C, Solid State Phys. 19, L125 (1986)Google Scholar
16. Bassani, F. and Parravicini, G.P., Electronic States and Optical Transitions in Solids, Pergamon, Oxford, 1975, pp. 154 Google Scholar
17. Weiner, J.S., Chemla, D.S., Miller, D.A.B., Haus, H.A., Gossard, A.C., Weigmann, W., and Burrus, C.A., Appl.Phys.Lett. 47, 664 (1985)Google Scholar