Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T16:40:41.643Z Has data issue: false hasContentIssue false

Effect of Helium Accumulation on the Spent Fuel Microstructure

Published online by Cambridge University Press:  19 October 2011

Cecile Ferry
Affiliation:
cecile.ferry@cea.fr, Commissariat à l'Energie Atomique, Department of Physico-chemistry, CEA-Saclay, Gif-sur-Yvette, 91191, France, +33 (0) 1 69 08 83 65, +33 (0)1 69 08 32 42
Jean-Paul Piron
Affiliation:
jean-paul.piron@cea.fr, Commisariat à l'Energie Atomique, CEA - Cadarache, Saint-Paul Lez Durance, 13108, France
Ray Stout
Affiliation:
raybstout@comcast.net, Rho Beta Sigma Affaires, Livermore, CA, CA 94550, United States
Get access

Abstract

The rapid release of activity when water firsts contacts the spent fuel surface in disposal will depend on the pellet microstructure at the arrival time of water in the container. Research performed on spent fuel evolution in a closed system has shown that the evolution of microstructure under disposal conditions should be governed by helium behavior with the cumulated α{decay damage. The evolution of fission gas bubble characteristics under repository conditions has been assessed. In UO2 fuels with a burnup of 47.5 GWd/t, the pressure of fission gas bubbles with the input of helium atoms should not reach the critical bubble pressure, thus micro-cracking in grains is not expected.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferry, C., Poinssot, C., Broudic, V., Cappelare, C., Desgranges, L., Garcia, P., Jégou, C., Lovera, P., Marimbeau, P., Piron, J.P., Poulesquen, A., Roudil, D., Gras, J.M., Bouffioux, P., “Synthesis on the spent fuel long term evolution,”CEA Report, CEA- R-6084, 2005, p.257.Google Scholar
2. Losonen, P., J. Nucl. Mat. 280, 5672 (2000).Google Scholar
3. Matzke, H.J. and Wiss, T., Radiation damage in nuclear material, ITU annual report, EUR 19812, 3043 (2000).Google Scholar
4. Evans, A.G., Davidge, R.W., J. Nucl. Mat. 33, 249260 (1969).Google Scholar
5. Stout, R. B., Ferry, C., Poinssot, C., Piron, J.P., “Estimations of failure pressures in spent fuels from actinide alpha decay helium transported to fission gas bubbles,”10th Internat. Conf. on Environmental Remediation and Radioactive Waste Management, Sept2005, Glasgow, Scotland.Google Scholar
6. Spino, J., Baron, D., Coquerelle, M., Stalios, A.D., J. Nucl. Mat. 256, 189196 (1998).Google Scholar
7. Spino, J., Vennix, K., Coquerelle, M., J. Nucl. Mat., 231 (1996).Google Scholar
8. Spino, J., Coquerelle, M., Baron, D., “Microstructure and fracture toughness characterization of irradiated PWR fuels in the burnup range of 40-67 GWd/t,” Proceedings of the technical Commitee meeting IAEA on Advances in fuel technology (1996).Google Scholar
9. Hall, R.O.A., Mortimer, M.J., Mortimer, D.A., J. Nucl. Mat. 148, 237256 (1987).Google Scholar
10. Ronchi, C., Hiernaut, J.P., J. Nucl. Mat. 325, 112 (2004).Google Scholar
11. Roudil, D., JÈgou, C., Deschanels, X., Peuget, S., Raepsaet, C., Gallien, J.P., Broudic, V., in Mat. Res. Sym. Proc. Vol.932, pp. 529536, (2005).Google Scholar