Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T09:19:27.497Z Has data issue: false hasContentIssue false

Effect of Geometric Factors on Polarization Properties of Vertical-Cavity Surface-Emitting Lasers With Tilted Pillar Structures

Published online by Cambridge University Press:  10 February 2011

Min Soo Park
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusong-gu, Taejon 305-701, Korea, btahn@cais.kaist.ac.kr
Byung Tae Ahn
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Koosung-dong, Yusong-gu, Taejon 305-701, Korea, btahn@cais.kaist.ac.kr
Hye Yong Chu
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon 305-600, Korea
Byueng-Su Yoo
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon 305-600, Korea
Hyo-Hoon Park
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P. O. Box 106, Taejon 305-600, Korea
Get access

Abstract

We have studied the effect of geometric factors on the polarization properties of verticalcavity surface-emitting lasers with tilted pillar structures. Laser pillars with circular, square, diamond, and rectangular shapes were formed using reactive ion beam etching, by tilting the substrate with an angle of 15° ∼ 30° toward the [110] or [110] direction. We measured the polarization characteristics for the devices of 10 ∼ 20 atm size. We observed that an effective geometric factor on the polarization selectivity in tilted pillar structures is an asymmetric shape of vertical-cavity rather than an anisotropic shape of device area in planar direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, Y. H., Jewell, J. L., Scherer, A., McCall, S. L., Harbison, J. P. and Florze, L. T., Electron. Lett. 25, p.1377 (1989).Google Scholar
2. Mukaihara, T., Ohnoki, N., Hayashi, Y., Hotori, N., Koyama, F. and Iga, K., IEEE J. Selected Topics in Quantum Electron. 1, p.667 (1995).Google Scholar
3. Choquette, K. D. and Leibenguth, R. E., IEEE Photon. Technol. Lett. 6, p.40 (1994).Google Scholar
4. Yoshikawa, T., Kosaka, H., Kurihara, K., Kajita, M., Sugimoto, Y. and Kasahara, K., Appl. Phys. Lett. 66, p.908 (1995).Google Scholar
5. Ser, J.-H., Ju, Y.-G., Sin, J.-H. and Lee, Y. H., Appl. Phys. Lett. 66, p.2769 (1995).Google Scholar
6. Chu, H. Y., Yoo, B.-S., Park, M. S. and Park, H.-H, IEEE Photon. Technol. Lett. 9, p.1066 (1997).Google Scholar
7. Yoo, B.-S., Park, H.-H. and Lee, E.-H., Electron. Lett. 30, p. 1060 (1994).Google Scholar
8. Park, H.-H. and Yoo, B.-S., ETRI J. 17, p. 1 (1995).Google Scholar
9. Park, H.-H., Yoo, B.-S., Chu, H. Y., Lee, E.-H., Park, M. S. and Ahn, B. T., Jpn. J. Appl. Phys. 35, p1378 (1996).Google Scholar