Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T13:05:34.523Z Has data issue: false hasContentIssue false

Dynamical Structure Factor and Vibrational Normal Modes of SiO2 Glass

Published online by Cambridge University Press:  01 January 1992

Wei Jin
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, Louisiana 70803-4001
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, Louisiana 70803-4001
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Physics & Astronomy and Department of Computer ScienceLouisiana State University, Baton Rouge, Louisiana 70803-4001
Get access

Abstract

We study the atomic vibrational dynamics in silica glass (a-SiO2) using molecular-dynamics (MD) simulations and classical lattice dynamics method. The SiO2 glasses were generated by molecular-dynamics and steepest-descent quench (SDQ) using an effective interatomic potential consisting of two-body and three-body interactions. The frequency and eigenvectors of vibrational normal modes are obtained by diagonalization of the dynamical matrix. The partial and total vibrational density of states (DOS), bond-projected DOS, participation ratio (PR), and neutron-weighted dynamic structure factor are calculated. The results are compared with inelastic neutron scattering experiments on SiO2 glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zarzycki, J., Glasses and the Vitreous States (Cambridge University Press, New York, 1991); The Physics and Technology of Amorphous SiO2, edited by Devine, R. A. B. (Plenum, New York, 1988).Google Scholar
2. Moss, S. C. and Price, D. L., in Physics of Disordered Materials, edited by Adler, D., Fritzsche, H., and Ovshinsky, S. R. (Plenum, New York, 1985), p. 77.Google Scholar
3. Johnson, P. A. V., et al., J. Non-Cryst. Solids 58, 109 (1983).Google Scholar
4. Dupree, R. and Pettifer, R. F., Nature 308, 523 (1984).Google Scholar
5. Hemley, R. J., et al. , Phys. Rev. Lett. 57, 747 (1986).Google Scholar
6. Polian, A. and Grimsditch, M., Phys. Rev. B 41, 6086 (1990).Google Scholar
7. Galeener, F. L., Leadbetter, A. J., and Stringfellow, M. W., Phys. Rev. B 27, 1052 (1983); Galeener, F. L. and Lucovsky, G., Phys. Rev. Lett. 22, 1474 (1976).Google Scholar
8. Carpenter, J. M. and Price, D. L., Phys. Rev. Lett. 54, 441 (1985).Google Scholar
9. Price, D. L. and Carpenter, J. M., J. Non-Cryst. Solids 92, 153 (1987).Google Scholar
10. Granéli, B. and Dahlborg, U., J. Non-Cryst. Solids 109, 295 (1989).Google Scholar
11. Woodcock, L. V., Angell, C. A., and Cheeseman, P., J. Chem. Phys. 65, 1565 (1976).Google Scholar
12. Garofalini, S. H., J. Chem. Phys. 76, 3189 (1982).Google Scholar
13. Bell, R. J. and Hibbins-Butler, D. C., J. Phys. C3, 2111 (1970); C4, 1214 (1971).Google Scholar
14. Bell, R. J., Rep. Prog. Phys. 35, 1215 (1972); Dean, P., Rev. Mod. Phys. 44, 127 (1972); R. J. Bell, in Methods in Computational Physics, Vol. 15, edited by G. Gilat (Academic Press, New York, 1976), p. 215; in Excitations in Disordered Systems, edited by M. F. Thorpe (Plenum Press, New York, 1981), p. 333 and p. 347.Google Scholar
15. Sen, P. N. and Thorpe, M. F., Phys. Rev. B 15, 4030 (1977).Google Scholar
16. Laughlin, R. B. and Joannopoulos, J. D., Phys. Rev. B 16, 2942 (1977).Google Scholar
17. de Leeuw, S. W. and Thorpe, M. F., Phys. Rev. Lett. 55, 2879 (1985); Thorpe, M. F. and de Leeuw, S. W., Phys. Rev. B 33, 8490 (1986).Google Scholar
18. Vashishta, P., Kalia, R. K., Rino, J. P., and Ebbsjö, I., Phys. Rev. B 41, 12197 (1990).Google Scholar
19. Jin, W., Rino, J. P., Vashishta, P., Kalia, R. K., and Nakano, A., in Strongly Coupled Plasma Physics, edited by Van Horn, H. M. and Ichirmaru, S. (to be published).Google Scholar
20. Jin, W., Kalia, R. K., Vashishta, P., and Rino, J. P. (to be published).Google Scholar
21. Rahman, A. and Vashishta, P., in The Physics of Superionic Conductors and Electrode Materials, edited by Perram, J. W. (Plenum, New York, 1983), p. 93.Google Scholar
22. Carpenter, J. M. and Pelizzari, C. A., Phys. Rev. B 12, 2391 (1975).Google Scholar
23. Nagel, S. R., Grest, G. S., and Rahman, A., Phys. Rev. Lett. 53, 368 (1984).Google Scholar