Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T18:01:09.492Z Has data issue: false hasContentIssue false

Dye-Doped, Polymer-Nanoparticle Gain Media for Tunable Solid-State Lasers

Published online by Cambridge University Press:  15 March 2011

F. J. Duarte
Affiliation:
Eastman Kodak Company, R& D Laboratories, Rochester, New York 14650, U.S.A.
R. O. James
Affiliation:
792 Oakridge Dr., Rochester, NY 14617, U.S.A.
Get access

Abstract

Tunable laser action, in the visible spectrum, has been established using dye-doped, polymer-silica nanoparticle gain media. The silica nanoparticles, averaging about 12 nm in diameter, appear to be uniformly dispersed in the polymethyl methacrylate (PMMA) matrix, since the optical homogeneity of the gain medium is maintained. Using rhodamine 6G dye and 30% weight-by-weight (w/w) silica nanoparticles, laser action was established in the 567–603 nm range. At the peak wavelength (λ ∼ 580 nm) laser conversion efficiency is ∼63% at a beam divergence of 1.9 mrad (∼1.3 times the diffraction limit). The new solid-state nanocomposite gain media also exhibits a reduction in |∂n/∂T| because the thermo-optic coefficient of silica is opposite in sign to that of the PMMA polymer-host component.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Duarte, F. J., Appl. Opt. 33, 3857 (1994).Google Scholar
2. Duarte, F. J., Costela, A., Garcia-Moreno, I., Sastre, R., Ehrlich, J. J., and Taylor, T. S., Opt. Quantum Electron. 29, 461 (1997).Google Scholar
3. Duarte, F. J., Opt. Commun. 117, 480 (1995).Google Scholar
4. Duarte, F. J., Appl. Opt. 38, 6347 (1999).Google Scholar
5. Costela, A., Garcia-Moreno, I., and Sastre, R., Phys. Chem. Chem.Phys. 5, 4745 (2003).Google Scholar
6. Duarte, F. J., Optics and Photonics News 14(10), 20 (2003).Google Scholar
7. Duarte, F. J., Costela, A., Garcia-Moreno, I., and Sastre, R., Appl. Opt. 39, 6522 (2000).Google Scholar
8. Costela, A., Garcia-Moreno, I., and Sastre, R., in Handbook of Advanced Electronic and Photonic Material: Liquid Crystals, Display and Laser Materials, edited by Nalwa, H. S., (Academic, New York, 2001).Google Scholar
9. Holzer, W., Gratz, H., Schmitt, T., Penzkofer, A., Costela, A., Garcia-Moreno, I., Sastre, R., and Duarte, F. J., Chem. Phys. 256, 125 (2000).Google Scholar
10. Dunn, B., McKenzie, J. D., Zink, J. I., and Stafsudd, O. M., Proc. SPIE 1328, 174 (1990).Google Scholar
11. Duarte, F. J., Ehrlich, J. J., Davenport, W. E., Taylor, T. S., and McDonald, J. C., in Proceedings of the International Conference on Lasers '92, edited by Wang, C. P., (STS, McLean, 1993), pp. 293296.Google Scholar
12. Duarte, F. J. and Pope, E. J. A., Ceram. Trans. 55, 267 (1995).Google Scholar
13. Duarte, F.J. and James, R.O., Optics Lett. 28(21), 20882090 (2003)Google Scholar
14. Duarte, F.J. and James, R.O., Appl. Opt. (2004), in press.Google Scholar
15. Duarte, F.J., Tunable Laser Optics, (Elsevier Academic, New York, 2003).Google Scholar
16. Duarte, F. J., James, R. O., and Rowley, L. A., U.S. Patent Application (filed on 22 December, 2002).Google Scholar
17. Maslyukov, A., Solkolov, S., Kaivola, M., Nyholm, K., and Popov, S., Appl. Opt. 34, 1516 (1995).Google Scholar
18. Popov, S., Pure Appl. Opt. 7, 1379 (1998).Google Scholar
19. Costela, A., Garcia-Moreno, I., Gomez, C., Garcia, O., and Sastre, R., Appl. Phys. B 75, 827 (2002).Google Scholar
20. Costela, A., Garcia-Moreno, I., Gomez, C., Garcia, O., and Sastre, R., Chem. Phys. Lett. 369, 656 (2003).Google Scholar