Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-21T16:15:18.706Z Has data issue: false hasContentIssue false

Direct Observation of Highly Polarized Non-Linear Absorption Dipole of Single Semiconductor Quantum Rods

Published online by Cambridge University Press:  21 March 2011

Eli Rothenberg
Affiliation:
Institute of Chemistry, the Farkas Center for Light Induced Processes and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Yuval Ebenstein
Affiliation:
Institute of Chemistry, the Farkas Center for Light Induced Processes and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Miri Kazes
Affiliation:
Institute of Chemistry, the Farkas Center for Light Induced Processes and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Uri Banin
Affiliation:
Institute of Chemistry, the Farkas Center for Light Induced Processes and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Get access

Abstract

Polarization fluorescence microscopy was used to study the nature of the emission and nonlinear absorption dipole of single CdSe/ZnS quantum rods. Rods, with aspect ratios ranging from 2.75 to 15, showed strongly polarized emission consistent with previous one-photon studies. Non- linear excitation showed a sharp angular dependence fully consistent with the predicted two- photon absorption process. Two-photon absorption probes different transitions than linear absorption due to modified parity and angular momentum selection rules. The two-photon absorption dipole was found to be parallel to the emission polarization, and allows achieving highly orientation selective excitation of quantum rods. This is yet a further demonstration of single molecule measurements in unraveling basic principles of light-matter interaction that are otherwise masked by ensemble averaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Empedocles, S.A., Neuhauser, R., Shimizu, K., Bawendi, M. G., Adv. Mater.11, 1243 (1999).Google Scholar
2. Banin, U., Bruchez, M. P., Alivisatos, A. P., Ha, T. J., Weiss, S., and Chemla, D. S., J. Chem. Phys., 110, 1195 (1999).Google Scholar
3. Dickson, R. M., Norris, D. J., Moerner, W. E., Phys. Rev. Lett. 81, 5322 (1998).Google Scholar
4. Xie, X. S., Dunn, R. C., Science 265, 361 (1994).Google Scholar
5. Nirmal, M., Dabbousi, B. O., Bawendi, M. G., Macklin, J. J., Trautman, J. K., Harris, T. D., Brus, L. E., Nature 383, 802 (1996).Google Scholar
6. Schlegel, G., Bohnenberger, J., Potapova, I., Mews, A., Phys Rev Lett 88, 137401 (2002).Google Scholar
7. Lakowicz, J. R., Principles of Fluorescence Spectroscopy, (Plenum, New York, 1999).Google Scholar
8. Cingolani, R., Lepore, M., Tommasi, R., Catalano, I.M., Lage, H., Heitmann, D., Ploog, K., Shimizu, A., Sakaki, H., Ogawa, T., Phys. Rev. Lett. 69, 1276 (1992).Google Scholar
9. Blanton, S.A., Hines, M.A., Schmidt, M.E., GuyotSionnest, P., J. Lumin. 70, 253 (1996).Google Scholar
10. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W, Science 300, 1434 (2003).Google Scholar
11. Peng, X.G., Manna, L, Yang, W.D., Wickham, J., Scher, E., Kadavanich, A. and Alivisatos, A.P., Nature (London) 404, 59 (2000).Google Scholar
12. Katz, D., Wizansky, T., Millo, O., Rothenberg, E., Mokari, T., and Banin, U., Phys. Rev. Lett. 89, 86801 (2002).Google Scholar
13. Hu, J. T., Li, L.S., Yang, W.D., Manna, L., Wang, L.W. and Alivisatos, A.P., Science 292, 2060 (2001).Google Scholar
14. Kazes, M., Lewis, D. Y., Ebenstein, Y., Mokari, T., and Banin, U., Adv. Mater. 14, 317 (2002).Google Scholar
15. Manna, L., Scher, E. C., and Alivisatos, A.P., J. Am. Chem. Soc. 122, 12 700 (2000).Google Scholar
16. Peng, Z. A., Peng, X., J. Am. Chem. Soc. 123, 1389 (2001).Google Scholar
17. Ebenstein, Y., Mokari, T., Banin, U., Appl. Phys. Lett. 80, 4033 (2002).Google Scholar
18. Mokari, T., Banin, U., Chem. Mater. 15, 3955 (2003).Google Scholar
19. Shi, Y., McClain, W. M., Harris, R. A., Phys. Rev. A 49, 1999 (1994).Google Scholar
20. Bopp, M. A., Jia, Y., Haran, G., Morlino, E. A., Hochstrasser, R. M., Appl. Phys. Lett. 73, 7 (1998).Google Scholar
21. Chen, X., Nazzal, A., Goorskey, D., Xiao, M., Peng, Z. A., Peng, X. G., Phys. Rev. B 64, 5304 (2001).Google Scholar