Article contents
Development of Large area Excimer VUV and UV Sources from a Dielectric Barrier Discharge
Published online by Cambridge University Press: 10 February 2011
Abstract
A large-area, high power density, high efficiency, and low cost excimer VUV and UV source, which is capable of producing narrow-band radiation tunable between the near UV (λ=354 nm) and the deep UV (λ=126 nm), is described.
This UV source is based on the principle that the radiative decomposition of excimer states created by a dielectric barrier discharge (silent discharge) in a rare gas, such as Ar2* (λ=126 nm), Kr2* (λ=146 nm), Xe2* (λ=172 nm) or molecular rare gas-halide complexes, such as ArCl* (λ=175 nm), KrCl* (λ=222 nm), XeCl* (λ=308 nm). Conversion efficiencies (from input electrical to output optical energy) as high as 22% can be achieved under optimum conditions. This powerful and economical lamp provides a useful UV source for low temperature photon-initiated processes and is an interesting alternative to conventional UV lamps for industrial large-scale low temperature processes. For industrial large-area processing and for the deposition of highly complex structures, these narrow band VUV and UV sources with high photon fluxes have definite advantages. Several applications of these excimer sources are reviewed, including photo-deposition of dielectric and metallic thin films, photo-oxidation of silicon, surface modification, etching of polymer, and photo degradation of pollutants.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
REFERENCES
- 6
- Cited by