Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-18T06:07:31.778Z Has data issue: false hasContentIssue false

Development of Large area Excimer VUV and UV Sources from a Dielectric Barrier Discharge

Published online by Cambridge University Press:  10 February 2011

Jun-Ying Zhang
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
Ian W. Boyd
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
Get access

Abstract

A large-area, high power density, high efficiency, and low cost excimer VUV and UV source, which is capable of producing narrow-band radiation tunable between the near UV (λ=354 nm) and the deep UV (λ=126 nm), is described.

This UV source is based on the principle that the radiative decomposition of excimer states created by a dielectric barrier discharge (silent discharge) in a rare gas, such as Ar2* (λ=126 nm), Kr2* (λ=146 nm), Xe2* (λ=172 nm) or molecular rare gas-halide complexes, such as ArCl* (λ=175 nm), KrCl* (λ=222 nm), XeCl* (λ=308 nm). Conversion efficiencies (from input electrical to output optical energy) as high as 22% can be achieved under optimum conditions. This powerful and economical lamp provides a useful UV source for low temperature photon-initiated processes and is an interesting alternative to conventional UV lamps for industrial large-scale low temperature processes. For industrial large-area processing and for the deposition of highly complex structures, these narrow band VUV and UV sources with high photon fluxes have definite advantages. Several applications of these excimer sources are reviewed, including photo-deposition of dielectric and metallic thin films, photo-oxidation of silicon, surface modification, etching of polymer, and photo degradation of pollutants.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ehrlich, D.J. and Tsao, J.Y., J. Vac. Sci. Technol. B1, 969 (1983).Google Scholar
2. Ehrlich, D.J. and Tsao, J.Y., Laser Direct Writing for VLSI, Chapter 3 in: VLSI Electronics: Microstructure Science, Vol. 7 (Academic Press, Boston) 1983.Google Scholar
3. Boyd, I.W., Laser Processing of Thin Films and Microstructures, Vol. 3, Springer, Berlin, FRG, 1987.Google Scholar
4. Cross, F.W., Al-Dhahir, R.K., Dyer, P.E., and MacRobert, A.J., Appl. Phys. Lett. 50, 1019 (1987).Google Scholar
5. Dyer, P.E., Laser Ablation of Polymers, in Photochemical Processing of Electronic Materials, Academic Press Limited (1992) 359.Google Scholar
6. Esrom, H. and Wahl, G., Chemtronics 4, 216 (1989).Google Scholar
7. Auerbach, A., Appl. Phys. Lett. 47(7), 669 (1985).Google Scholar
8. Harish, C.M., Kumar, V. and Prabhakar, A., J. Electrochem. Soc. 135, 2903 (1988).Google Scholar
9. Bryce-Smith, D., Photochemistry, The Chemical Society, Burlington House, London, 1977.Google Scholar
10. Eliasson, B. and Kogelschatz, U., Appl. Phys. B 46, 299 (1988).Google Scholar
11. Esrom, H., Demny, J., and Kogelschatz, U., Chemtronics 4, 202 (1989).Google Scholar
12. Bergonzo, P., Kogelschatz, U., and Boyd, I.W., Appl. Surf. Sci. 69, 393 (1993).Google Scholar
13. Esrom, H., Zhang, J.-Y., and Kogelschatz, U., Mat. Res. Symp. Proc. Vol. 236, 39 (1992).Google Scholar
14. Volkova, G.A., Kirillova, N.N., Pavlovskaya, E.N. and Yakovleva, A.V., J. Appl. Spectrosc. 41, 1194(1984).Google Scholar
15. Eliasson, B. and Kogelschatz, U., Proc. 40 Ann. Gaseous Electron. Conf. (GEC 87), Atlanta 1987, p. 174.Google Scholar
16. Gellert, B., Eliasson, U. and Kogelschatz, U., Proc. 5 Int. Symp. on the Science & Technology of Light Sources (LS:5), York 1989, p. 155 and 181.Google Scholar
17. Müller, H., Neiger, M., Schorpp, V. and Stockwald, K., Proc. 5 Int. Symp. on the Science and Technology of Light Sources (LS:5), York 1989, p. 171.Google Scholar
18. Kogelschatz, U., Pure & Appl. Chem. 62, 1667 (1990).Google Scholar
19. Duzy, C. and Boness, J., IEEE J. Quant. Electron. QE–16, 640 (1980).Google Scholar
20. Dutuit, O., Gutchek, R.A. and Lecalve, J., Chem. Phys. Lett. 58, 66 (1978).Google Scholar
21. Thonnard, N. and Hurst, G.S., Phys. Rev. A5, 1110 (1972).Google Scholar
22. Moerman, P., Boucique, R. and Mortier, P., Phys. Lett. 49A, 179 (1974).Google Scholar
23. Kitamura, M., Mitsuka, K., and Sato, H., Appl. Surf. Sci. 79/80, 507 (1994).Google Scholar
24. Eckstrom, D.J., Nakano, H.H., Lorents, D.C., Rothem, T., Betts, J.A., Lainhart, M.E., Dakin, D.A., Maenchen, J.E., J. Appl. Phys. 64, 1679 (1988).Google Scholar
25. Eckstrom, D.J., Nakano, H.H., Lorents, D.C., Rothem, T., Betts, J.A., Lainhart, M.E., Triebes, K.J., Dakin, D.A., J. Appl. Phys. 64, 1691 (1988).Google Scholar
26. Kogelschatz, U., Appl. Surf. Sci. 54, 410 (1992).Google Scholar
27. Malinin, A.N., Shuaibov, A.K. and Shevera, V.S., J. Appl. Spectrosc, 32, 313 (1980).Google Scholar
28. Neiger, M., Schorpp, V. and Stockwald, K., Proc. 41. Ann. Gaseous Electron. Conf. (GEC 88), Minneapolis p. 74, 1988.Google Scholar
29. Zhang, J.-Y. and Boyd, Ian W., J. Appl. Phys. 80 (1996) 633.Google Scholar
30. Stockwald, K., Thesis, Karlsruhe University, Germany, 1991.Google Scholar
31. Schorpp, V., Thesis, Karlsruhe University, Germany, 1991.Google Scholar
32. Esrom, H. and Kogelschatz, U., Thin Solid films, 218, 231 (1992).Google Scholar
33. Patel, P., Boyd, I.W., Appl. Surf. Sci., 46, 352 (1990).Google Scholar
34. Esrom, H. and Kogelschatz, U., Appl. Surf. Sci., 54, 440 (1992).Google Scholar
35. Zhang, J.-Y., Thesis, Karlsruhe University, Germany, 1993.Google Scholar
36. Zhang, J.-Y., Esrom, H. and Boyd, Ian W., Surf. Appl. Sci. 000 (1996)000.Google Scholar
37. Zhang, J.-Y., Esrom, H. and Boyd, I.W., Appl. Surf. Sci. 96–98 (1996) 399.Google Scholar
38. Zhang, J.-Y., Fang, Qi, King, S.L. and Boyd, Ian W., Appl. Surf. Sci. 000 (1996)000.Google Scholar
39. Bergonzo, P., Boyd, I.W., J. Appl. Phys. 76 (7), 4372 (1994).Google Scholar
40. Bergonzo, P. and Boyd, I.W., Appl. Phys. Lett. 63, 1757 (1993).Google Scholar
41. Bergonzo, P., Kogelschatz, U., and Boyd, I.W., SPIE, Vol 2045, 174 (1994).Google Scholar
42. Boyd, I.W., Zhang, J.-Y. and Bergonzo, P., SPIE, Vol 2403, 290 (1995).Google Scholar
43. Zhang, J.-Y. and Boyd, I.W., Electronics Letters, 32 (1996) 2097.Google Scholar
44. Eftekhari, G., J. Electrochem. Soc. 140, 787 (1993).Google Scholar
45. Zhang, J.-Y., Esrom, H. and Boyd, I.W., Surface and interface analysis 24 (1996) 718.Google Scholar
46. Andrew, J.E., Dyer, P.E., Forster, D., and Key, P.H., Appl. Phys. Lett. 43, 717 (1983).Google Scholar
47. Zhang, J.-Y., Esrom, H., Kogelschatz, U., and Emig, G., J. of Adhesion Sci. and Technol. 8, 1179 (1994).Google Scholar
48. Zhang, J.-Y., Esrom, H., Kogelschatz, U. and Emig, G., Appl. Surf. Sci. 69, 299 (1993).Google Scholar
49. Kogelschatz, U., Eliasson, B. and Esrom, H., Materials & Design 12 (1991) 251.Google Scholar
50. Kogelschatz, U., NATO Advanced Research Workshop on Non-thermal Plasma Techniques for Pollution Control, CambridgeUniversity, UK, September 21–25, 1992.Google Scholar