Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-15T19:09:26.806Z Has data issue: false hasContentIssue false

Development and Testing of a New Porous Crystalline Matrix (Gubka) for Stabilizing Actinide Solutions

Published online by Cambridge University Press:  10 February 2011

Albert S. Aloy
Affiliation:
V. G. Khlopin Radium Institute, 2-nd Murinskiy Ave., St. Petersburg, 194021, Russia
A. G. Anshits
Affiliation:
Krasnoyarsk Scientific Center of Siberian Branch of Russian Academy of Sciences (KSC RAS), 42 K. Marx St., Krasnoyarsk 660049, Russia
A. A. Tretyakov
Affiliation:
Federal State Unitary Enterprise “Mining and Chemical Combine” (FSUE MCh C), 53 Lenin St., Zheleznogorsk, Krasnoyarsk Region, 660033, Russia
D. A. Knecht
Affiliation:
Idaho National Engineering and Environmental Laboratory, P. O. Box 1625, Idaho Falls, ID 83415
T. J. Tranter
Affiliation:
Idaho National Engineering and Environmental Laboratory, P. O. Box 1625, Idaho Falls, ID 83415
Y. Macheret
Affiliation:
Idaho National Engineering and Environmental Laboratory, P. O. Box 1625, Idaho Falls, ID 83415
Get access

Abstract

This paper describes the results of a joint research program of the Russian institutes at St. Petersburg, Krasnoyarsk and Zheleznogorsk with the Idaho National Engineering and Environmental Laboratory. A new “Gubka” (“sponge” in Russian) material was used to sorb and stabilize surrogate problematic actinide solutions, which contained lanthanide mixtures in nitric acid and tracer americium–241, by using repeated saturation-drying-calcining cycles. These tests resulted in maximum loading up to about 45 wt.% nitrate salts after drying and 33 wt.% oxides after calcination. The rates of americium–241 recovery were measured in 6 M nitric acid at 60°C. Gubka samples loaded with cerium and neodymium oxides were hot pressed at 29 MPa and 20-1000°C, resulting in a 35 % volume reduction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fomenko, E. V., Kondratenko, E. V., Salanov, A. N., Bajukov, O. A., Talyshev, A. A., Maksimov, N. G., Nizov, V. A., and Anshits, A. G., Catalysis Today, 42, pp. 267272 (1998).Google Scholar
2 Simmons, J. H., Macedo, P. B., Barkatt, Aaron, and Litovitz, T. A., Nature, 278, p. 729 (1979).Google Scholar
3 Macedo, P. B., Tran, D. C., Simmons, J. H., Saleh, M., Barkatt, A., Simmons, C. J., Lagakos, N., and Dewitt, E., in Ceramics in Nuclear Waste Management, edited by Chikalla, T. D. and Mendel, J. E., (Technical Information Center US DOE CONF-790420), Cincinnati, OH, 1979, pp. 321326.Google Scholar
4 Nardova, A. K. and Tumanova, O. S., in Proceedings of Int. Topical Mfg. On Nuclear and Hazardous Waste Management Spectrum'96, August 18-23, 1996, Seattle, Washington, (ANS, 1996, pp. 21542160).Google Scholar
5 Nardova, A. K., Filippov, E. A., and Egorov, G. F. in Proceedings of Int. Topical Mtg. On Nuclear and Hazardous Waste Management Spectrum‘96, August 18-23, 1996, Seattle, Washington, (ANS, 1996, pp. 21202122).Google Scholar
6 Zaharov, M. A., Potemkina, T. I., Kozar', A. A., Inorganic Materials, 29, #3, pp. 379380 (1993).Google Scholar
7 Portnoy, K. I., Fadeeva, V. I., and Timofeeva, N. I., Atom Energy, 14, #6, pp. 559562 (1963).Google Scholar
8 Nikiforov, A. S., Zaharov, M. A., and Kozar', A.A., Atom Energy, 70, #3, pp. 188191 (1991).Google Scholar
9 Zaharov, M. A., Kozar', A. A., and Nikiforov, A. S., Reports of USSR Academy of Science, 314, #6, pp. 14411444 (1990).Google Scholar