Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T10:36:14.718Z Has data issue: false hasContentIssue false

A Consistent Model for Disordering of GaAs/AlAs- Superiattices During Zinc Diffusion

Published online by Cambridge University Press:  03 September 2012

H. Zimmermann
Affiliation:
Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, Durham, N.C. 27706, USA
T. Y. Tan
Affiliation:
Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, Durham, N.C. 27706, USA
U. Goesele
Affiliation:
Dept. of Mechanical Engineering and Materials Science, School of Engineering, Duke University, Durham, N.C. 27706, USA
Get access

Abstract

A model for the disordering of GaAs/AlAs-superlattices during zinc diffusion, which is consistent with recently established models for gallium self-diffusion and zinc diffusion in GaAs, is presented. Four coupled partial differential equations resulting from the model are solved numerically. In accordance with measured data in the literature, no disordering without zinc can result for temperatures around 600°C. Zinc diffusion, however, produces a large amount of gallium self-interstitials, which leads to a complete disordering of superlattices with a period thickness of 32 nm to a depth of about 0.8 μm within one hour. The used values for the diffusion coefficient and the equilibrium concentration of gallium self-interstitials are a consistent splitting of the gallium interstitial dominated self-diffusion coefficient.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fukuzawa, T., Semura, S., Saito, H., Ohta, T., Uchida, Y., and Nakashima, H., Appl. Phys. Lett. 45, 1 (1984).Google Scholar
2. Allen, E. L., PhD thesis, Stanford University, 1991.Google Scholar
3. Deppe, D. G. and Holonyak, N. Jr, J. Appl. Phys. 64, R93 (1988).Google Scholar
4. Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 69, 3547 (1991).Google Scholar
5. Lee, J. W. and Laidig, W. D., J. Electronic Materials 13, 147 (1984).Google Scholar
6. Winteler, H. R., Helvetica Physica Acta 44, 451 (1970).Google Scholar
7. Enquist, P., Hutchby, J. A., and de Lyon, T. J., J. Appl. Phys. 63, 4485 (1988).Google Scholar
8. Tuck, B. and Adegboyega, G. A., J. Phys. D 12, 1985 (1979).Google Scholar
9. Deal, M. D. and Stevenson, D. A., J. Appl. Phys. 59, 2398 (1986).Google Scholar
10. Yu, S., Tan, T.Y., and Gösele, U., J. Appl. Phys. 70, 4827 (1991).Google Scholar
11. Tan, T. Y., Yu, S., and Gösele, U., J. Appl. Phys. 70, 4823 (1991).Google Scholar
12. Luysberg, M., Jäger, W., Urban, K., Schänzer, M., Stolwijk, N. A., and Mehrer, H., Materials Science and Engineering B 13, 137 (1992).Google Scholar
13. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Hectron. Devices ED-32, 156 (1985).Google Scholar
14. Hsieh, K. Y., Lo, Y. C., Lee, J. H., and Kolbas, R. M., Inst. Phys. Conf. Ser. No 96, 393 (1989).Google Scholar
15. Stolwijk, N. A., Schuster, B., Hölzl, J. H., Mehrer, H., and Frank, W., Physica 116B, 335 (1983).Google Scholar
16. Zimmermann, H. and Ryssel, H., J. Electrochem. Soc. 139, 256 (1992).Google Scholar