Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-12T19:56:31.219Z Has data issue: false hasContentIssue false

Connecting Curable Siloxanes to Luminescent Organic Semiconductors - Monomers for Functional Hybrid Materials

Published online by Cambridge University Press:  01 February 2011

Heiner Detert
Affiliation:
detert@mail.uni-mainz.de, Johannes Gutenberg-Universität Mainz, Institut für Organische Chemie, Duesbergweg 10 - 14, Mainz, Rheinland-Pfalz, 55099, Germany, ++49-6131-3922111
Erli Sugiono
Affiliation:
e.sugiono@chemie.uni-frankfurt.de, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt/Main, N/A, 60444, Germany
Get access

Abstract

Luminescent stilbenoid chromophores with two alkoxysilane end groups are prepared via hydrosilylation or condensation / reduction of substituted 5-ring OPVs with hydro- and aminopropylsilanes. Chromophore and curable units are connected via flexible spacers. To obtain compounds with a rigid connection between silane and π-system, iodo- or bromo-OPVs were coupled to alkoxysilanes carrying vinyl- or p-vinylphenyl moieties under Heck conditions. This approach allowed a combined connection of the chromophore to the silane moiety with an extension of the π-system. Hydrolysis of the alkoxysilanes yields silanols condensing to curable three-dimensional networks, thus allowing the transformation of small molecules to transparent and fluorescent films with well-defined chromophores.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hadziioannou, G., “Semiconducting Polymers”, (Wiley-VCH, Weinheim, New York, 1999), and references therein.Google Scholar
2 Kraft, A., Grimsdale, A. C., and Holmes, A. B., Angew. Chem. 110 416 (1998); Angew. Chem. Int. Ed. 37, 402 (1998).Google Scholar
3 Drefahl, G. and Plötner, G., Chem. Ber. 91, 274 (1958).Google Scholar
4 Stalmach, U., Kolshorn, H., Brehm, I., and Meier, H., Liebigs Ann. 1449 (1996).Google Scholar
5 Schenk, R., Gregorius, H., Meerholz, K., Heinze, J., and Müllen, K., J. Am. Chem. Soc. 113, 2634 (1991).Google Scholar
6 Müllen, K. and Wegner, G., “Electronic Materials: The Oligomer Approach” (Wiley-VCH Weinheim, New York, 1998) and references therein.Google Scholar
7 Birckner, E., Grummt, U.-W., Rost, H., Hartmann, A., Pfeiffer, S., Tillmann, H., and Hörhold, H.-H., J. Fluoresc. 8, 73 (1998).Google Scholar
8 Detert, H., Schollmeyer, D., and Sugiono, E., Eur. J. Org. Chem. 2927 (2001).Google Scholar
9 Salbeck, J., Ber. Bunsenges. Phys. Chem. 100, 1667 (1996).Google Scholar
10 Detert, H. and Sadovski, O., Mater. Res. Soc. Proc. 814, 305 (2004).Google Scholar
11 Bacher, A., Bleyl, I., Erdelen, C. H., Haarer, D., Paulus, W., and Schmidt, H.-W., Adv. Mater. 9, 923 (1997).Google Scholar
12 Cui, J., Huang, Q., Veinot, J. G. C., Yan, H., and Marks, T. J., Adv. Mater. 14, 565 (2002).Google Scholar
13 Wung, C. J., Pang, Y., Prasad, P. N., and Karasz, F. E., Polymer 32, 605 (1991).Google Scholar
14 Corriu, R. J. P., Angew. Chem. 112, 1432 (2000).Google Scholar
15 Zhu, P., Kang, H., Facchetti, A., Evmenenko, G., Dutta, P., and Marks, T. J. J., J. Am. Chem. Soc. 125, 11496 (2003).Google Scholar
16 Pike, A. R., Patole, S. N., Murray, N. C., Ilyas, T., Connolly, B. A., Horrocks, B. R., and Houlton, A., Adv. Mater. 15, 254 (2003).Google Scholar
17 Brondani, D. J., Corriu, R. J. P., Ayoubi, S. E., Moreau, J. J. E., and Man, M. W. C., J. Organomet. Chem. 451, C1 (1993).Google Scholar
18 Carbonneau, C., Frantz, R. J., Durand, O., and Corriu, R. J. P., Tetrahedron Lett. 40, 5855 (1999).Google Scholar
19 Detert, H. and Schmitt, V., J. Phys. Org. Chem. 17 1051 (2004).Google Scholar
20 Lewis, F. D. and DeVoe, R. J., Tetrahedron 38, 1096 (1982).Google Scholar