Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T18:57:13.706Z Has data issue: false hasContentIssue false

Characteristics of 56 Mev Oxygen Implantation into Si and III-V Semiconductors

Published online by Cambridge University Press:  26 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
B. Jalali
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. M. Poate
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. D. Fox
Affiliation:
Florida State University, Tallahassee, FL 32306
K. W. Kemper
Affiliation:
Florida State University, Tallahassee, FL 32306
C. W. Magee
Affiliation:
Evans East, Inc., Plainsboro, NJ 08836
K. S. Jones
Affiliation:
University of Florida, Gainesville, FL 32611
Get access

Abstract

High energy (56 MeV) oxygen implants into Si, GaAs and InP give rise to sharp, non-Gaussian depth profiles with the distributions skewed towards greater depths. This skewness is probably the result of channeling, and it is a common feature of MeV implants into semiconductors. The ratio of the peak concentration in the depth profile to the concentration at the surface is ≥103 for each material, and the full width at half maximum of each profile is ∼2 μm. The experimental projected ranges for the oxygen are ∼31 μm in GaAs, ∼36 μm in InP and ∼46 μm in Si. These are ∼10% larger than the values predicted by the PRAL code. The photoluminescence intensity from the top 1 μm from the surface of both GaAs and InP is reduced by more than an order of magnitude for 56 MeV oxygen implants at a dose of 1.3 × 1015 cm−2, due to point defect introduction in this region. Potential applications for these high energy implants in electronic and photonic device fabrication will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dietrich, H. B., Proc. SPIE Conf., Advanced Applications of Ion Implantation, 530, 30 (1985).Google Scholar
[2] Thompson, P. E., Proc. Electrochemical Society Meeting on Ion Implantation and Dielectrics for Elemental and Compound Semiconductors, Hollywood, FL., 90–13 79 (1990).Google Scholar
[3] Wilson, R. G., J. Appl. Phys., 60, 2797 (1987).Google Scholar
[4] Cheung, N., Proc. SPIE Conf. Advanced Applications of Ion Implantation, 530, 2 (1985).Google Scholar
[5] Ingram, D. C., Baker, J. A., Walsh, D. A. and Strathman, E. M., Nucl. Instr. Meth., B21, 460 (1987).Google Scholar
[6] Pramanik, D. and Saxena, A. N., Nucl. Instr. Meth., B10 /11, 493 (1985).Google Scholar
[7] Sai-Halasz, G. A., Wordeman, M. R. and Dennard, E. H., IEEE Electron. Dev. ED 29, 725 (1982).Google Scholar
[8] Current, M. I., Martin, R. A., Doganis, K. and Bruce, R. H., Proc. SPIE Conf. Advanced Applications of Ion Implantation, 530, 117 (1985).Google Scholar
[9] Byrne, P. F., Cheung, N. W. and Sadana, D. K., Appl. Phys. Lett., 41, 537 (1982).Google Scholar
[10] Ziegler, J. F., Nucl. Instr. Meth., B6, 270 (1985).Google Scholar
[11] Biersack, J. B., Nucl. Instr. Meth., B35, 205 (1988).Google Scholar
[12] La Ferla, A., Rimini, E., Ciavola, G. and Ferla, G., Nucl. Instr. Meth. in Phys. Res., B37 /38,951 (1989).Google Scholar
[13] La Ferla, A., DiFranco, A., Rimini, E., Ciavola, G. and Ferla, G., Mat. Sci. Eng., B2, 69 (1989).Google Scholar
[14] Biersack, J. P., Nucl. Instr. Meth., 182/183, 199 (1981).Google Scholar
[15] EI-Ghor, M. K., Holland, O. W., White, C. W. and Pennycock, S. J., J. Mater. Res., 5, 352 (1990).Google Scholar