Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-02T19:34:14.807Z Has data issue: false hasContentIssue false

CdTe Thin Films: Spray Deposition Using a Nanoparticle Ink Precursor

Published online by Cambridge University Press:  10 February 2011

Douglas L. Schulz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3393.
Martin Pehnt
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3393.
Calvin J. Curtis
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3393.
David S. Ginley
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401-3393.
Get access

Abstract

CdTe thin film growth using nanoparticle precursors and spray deposition has been investigated. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent resulting in the formation of soluble Nal and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe colloids prepared by this method exhibit a dependence of the nanoparticle diameter upon reaction temperature as determined by transmission electron microscopy (TEM) and UV-Visible spectroscopy (UV-Vis). CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25–75 Å diameter) onto substrates at elevated temperatures (T = 280–440 °C) with no further thermal treatment. These films were characterized by XRD, x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C, but substantial O. AFM gave CdTe grain sizes of ˜0.1–0.3 pim for films sprayed at 400 °C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ferekides, C., Britt, J., Ma, Y. and Killian, L., Proc. 23rd IEEE Photovoltaic Spec. Conf. 389 (1993).Google Scholar
2. Serreze, H. B., Lis, S., Squillante, M. R., Turcotte, R., Talbot, M. and Entine, G., Proc. 15th IEEE Photovoltaic Spec. Conf. 1068 (1981).Google Scholar
3. Albright, S. P., Jordan, J. F., Ackermann, B. and Chamberlin, R. R., Solar Cells 27, 77 (1989).Google Scholar
4. Albright, S. P., Ackermann, B. and Jordan, J. F., IEEE Trans. Electron Dev. 37, 434 (1990).Google Scholar
5. Steigerwald, M. L. and Brus, L. E., Annu. Rev. Mater. Sci. 19, 471 (1989).Google Scholar
6. Weller, H., Adv. Mater. 5, 88 (1993).Google Scholar
7. Weller, H., Angew. Chem. Int. Ed. Engl. 32, 41 (1993).Google Scholar
8. Service, R. F., Science 271, 920 (1996).Google Scholar
9. Brus, L. E., J. Chem. Phys. 79, 5566 (1983).Google Scholar
10. Nozik, A. J., Williams, F., Nenadovic, M. T.', Rahj, T. and Mic'ic, O.', J. Phys. Chem. 89, 397 (1985).Google Scholar
11. Richtsmeier, S. C., Parks, E. K., Liu, K., Pobo, L. G. and Riley, S. J., J. Chem. Phys. 82, 3659 (1985).Google Scholar
12. Beck, D. D. and Siegel, R. W., J. Mater. Res. 7, 2840 (1992).Google Scholar
13. Nedeljkovic, J. M.', Nenadovic, M. T.', Mic'ic, O. I.' and Nozik, A. J., J. Phys. Chem. 90, 12 (1986).Google Scholar
14. Wang, Y. and Mahler, W., Opt. Commun. 61, 233 (1987).Google Scholar
15. Banyai, L., Hu, Y. Z., Lindberg, M. and Koch, S. W., Phys. Rev. B 38, 8142 (1988).Google Scholar
16. Goldstein, A. N., Echer, C. M. and Alivisatos, A. P., Science 256, 1425 (1992).Google Scholar
17. Chemseddine, A. and Fearheiley, M. L., Thin Solid Films 247, 3 (1994).Google Scholar
18. Alivisatos, A. P. and Goldstein, A. N., United States Patent 5 (1993).Google Scholar
19. Andres, R. P., Averback, R. S., Brown, W. L., Brus, L. E., Goddard, W. A., Kaldor, A., Louie, S. G., Moscovits, M., Peercy, P. S., Riley, S. J., Siegel, R. W., Spaepen, F. and Wang, Y., J. Mater. Res. 4, 704 (1989).Google Scholar
20. Pehnt, M., Schulz, D. L., Curtis, C. J., Jones, K. M. and Ginley, D. S., Appl. Phys. Lett. 67, 2176 (1995).Google Scholar
21. Pehnt, M., Schulz, D. L., Curtis, C. J., Moutinho, H. R., Schwartzlander, A. and Ginley, D. S., Mat. Res. Soc. Symp. Proc. (in press) (1995).Google Scholar
22. Jarvis, R. F., Mullenborn, M., Yacobi, B. G., Haegel, N. M. and Kaner, R. B., Mat. Res. Soc. Symp. Proc. 272, 229 (1992).Google Scholar
23. Mullenborn, M., Jarvis, R. F., Yacobi, B. G., Kaner, R. B., Coleman, C. C. and Haegel, N. M., Appl. Phys. A 56, 3217 (1993).Google Scholar
24. Murray, C. B., Norris, D. J. and Bawendi, M. G., J. Am. Chem. Soc. 115, 8706 (1993).Google Scholar
25. Schulz, D. L., Curtis, C. J., Pehnt, M. and Ginley, D. S., Patent Application on File (1995).Google Scholar
26. Schulz, D. L. and Curtis, C. J., unpublished results (1995).Google Scholar
27. Lippens, P. E. and Lannoo, M., Semicond. Sci. Technol. 6, A157 (1991).Google Scholar