Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-05T21:48:38.874Z Has data issue: false hasContentIssue false

CaBi4Ti4O15 thin film deposition on electroplated Platinum substrates using a sol-gel method

Published online by Cambridge University Press:  15 March 2011

Takeyasu Saito
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Yuichiro Hirota
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Mariko Ooyanagi
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Naoki Okamoto
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Kazuo Kondo
Affiliation:
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Takeshi Yoshimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Norifumi Fujimura
Affiliation:
Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
Get access

Abstract

CaBi4Ti4O15 growth on different Platinum substrates was carried out through a sol-gel method. Higher crystallization temperature and 20% excess Bi decreased pyrochlore contents in the CaBi4Ti4O15 films. Repetition through coating, calcination and crystallization decreased void formation on the surface. C-axis oriented thin film could be grown on sputtered platinum substrates with low Pt (200) orientation. On electroplated Pt substrates, (119) oriented CaBi4Ti4O15 thin film was grown, suggesting surface roughness of Pt substrates is a crucial factor for orientation control of sol-gel derived CaBi4Ti4O15 thin film.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sinharoy, S., Buhay, H., Lampe, D.R. and Francombe, M.H., J. Vac. Sci. Tech. A10, pp.15541561 (1992).Google Scholar
2. Jones, R.E. Jr Maniar, P.D., Moazzami, R., Zurcher, P., Witowski, J.Z., Lii, Y.T., Chu, P. and Gillespie, S.J., Thin Solid Films 270, pp.584588 (1995).Google Scholar
3. Fox, G.R., Chu, F. and Davenport, T., J. Vac. Sci. Tech. B19, pp.19671971 (2001).Google Scholar
4. Jung, D.J., Kim, H.H. and Kim, K., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, pp.25352540 (2007).Google Scholar
5. Horii, Y., Hikosaka, Y., Itoh, A., Matsuura, K., Kurasawa, M., Komuro, G., Maruyama, K., Eshita, T., Kashiwagi, S., Tech. Dig. - Int. Electron Devices Meeting 2002, pp.539542 (2002).Google Scholar
6. McAdams, H.P., Acklin, R., Blake, T., Du, X.H., Eliason, J., Fong, J., Kraus, W.F., Liu, D., Madan, S., Moise, T., Natarajan, S., Ning, Q., Yunchen, Q., Remack, K.A., Rodriguez, J., Roscher, J., Seshadri, A. and Summerfelt, S.R., IEEE J. Solid-State Circuits 39, pp.667677 (2004).Google Scholar
7. Kumura, Y., Ozaki, T., Kanaya, H., Hidaka, O., Shimojo, Y., Shuto, S., Yamada, Y., Tomioka, K., Yamakawa, K., Yamazaki, S., Takashima, D., Miyakawa, T., Shiratake, S., Ohtsuki, S., Kunishima, I. and Nitayama, A., Solid-State Electronics 50, pp606612 (2006).Google Scholar
8. Kohlstedt, H., Mustafa, Y., Gerber, A., Petraru, A., Fitsilis, M., Meyer, R., Bottger, U. and Waser, R., Microelectr. Eng. 80, pp.296304 (2005).Google Scholar
9. Wouters, D. J., Maes, D., Goux, L., Lisoni, J.G., Paraschiv, V., Johnson, J.A., Schwitters, M., Everaert, J.L., Boullart, W., Schaekers, M., Willegems, M., H. Vander Meeren, Haspeslagh, L., Artoni, C., Caputa, C., Casella, P., Corallo, G., Russo, G., Zambrano, R., Monchoix, H., Vecchio, G. and Autryve, L. Van, J. Appl. Phys. 100, pp.051603 (2006).Google Scholar
10 Burr, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K. and Shenoy, R.S., IBM J. Res. Dev. 52, pp.449464 (2008).Google Scholar
11. Zhang, L., Chu, R., Zhao, S., Li, G. and Yin, Q., Mater. Sci. Eng. B 116, pp.99103 (2005).Google Scholar
12. Villegas, M., Jardiel, T. and Farias, G., J. European Ceram. Soc. 24, pp.10251029 (2004).Google Scholar
13. Yan, X., Zhang, H.T., Ubic, R., Reece, M.J., Liu, J., Shen, Z.J. and Zhang, Z., Adv. Matt. 17 (2005), p. 1261 Google Scholar
14. Zeng, J.T., Li, Y.X., Wang, D. and Yin, Q.R., Solid State Commun. 133, pp.553557 (2005).Google Scholar
15. Moure, A., Alemany, C. and Pardo, L., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, pp.570577.Google Scholar
16. Hong, S.H., Horn, J.A., Trolier-McKinstry, S. and Messing, G.L., J. Mater. Sci. Lett. 19, pp.16611664 (2000).Google Scholar
17. Kato, K., Fu, D., Tanaka, K., Suzuki, K., Kimura, T., Nishizawa, K. and Miki, T., Int. J. Appl. Ceram. Technol. 2, pp.6472 (2005).Google Scholar
18. Yan, H., Li, C., Zhou, J., Zhu, W., He, L. and Song, Y., Jpn. J. Appl. Phys. 39, pp.63396342 (2000).Google Scholar
19. Kato, K., Suzuki, K., Fu, D., Nishizawa, K. and Miki, T., Appl. Phys. Lett. 81, p.32273229 (2002).Google Scholar
20. Fu, D., Suzuki, K. and Kato, K., Appl. Phys. Lett. 85, p.35193521 (2004).Google Scholar
21. Uchida, H., Sakurai, K., Okada, I., Matsuda, H., Iijima, T., Kojima, T., Wartanabe, T. and Funakubo, H., Jpn. J. Appl. Phys. 42, p.59905993 (2003).Google Scholar
22. Zhang, S., Kim, N., Shrout, T.R., Kimura, M. and Ando, A., Solid State Commun. 140, pp.154158 (2006)Google Scholar