Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T18:00:20.320Z Has data issue: false hasContentIssue false

Boron Solubility Limits Following Low Temperature Solid Phase Epitaxial Regrowth

Published online by Cambridge University Press:  21 March 2011

C. D. Lindfors
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6130, U. S. A.
K. S. Jones
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611-6130, U. S. A.
M. J. Rendon
Affiliation:
Semiconductor Products Sector, Motorola Inc. Austin, TX 44548, U. S. A.
Get access

Abstract

The work described herein focuses on examining the effect of solid phase epitaxial regrowth (SPER) on boron implanted silicon. It is shown that boron levels within the silicon can greatly enhance or reduce the regrowth rate of the silicon. Electrical measurements show optimum sheet resistances for 5 keV, 2×1015 cm−2 implant conditions yielding sheet resistance values of ∼140 Ω/sq at 500 °C annealing to ∼120 Ω/sq at 650 °C. Results using Hall effect and four-point probe show lower doses of boron will become fully active but levels will drop significantly as dose is increased. Lastly, maximum active concentrations of boron appear to reach values of ∼3-4×1020 cm−3 for a boron dose of 1×1015 cm−2 after SPER. Lower SPER anneal temperatures or higher doses tend to activate less boron.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. International Technology Roadmap for Semiconductors (ITRS), 1999 Edition, Dec., 1999, Semiconductor Industry Association, 181 Metro Drove, Suite 450, San Jose, CA 95110 (http://www.itrs.net/1999_SIA_Roadmap/Home.htm)Google Scholar
2. Michel, A. E., Nuclr. Inst. and Meth. In Phys. Res. B, 37/38, 379 (1989)Google Scholar
3. Eaglesham, D. J., Stolk, P. A., Gossman, H. J., and Poate, J. M., Appl. Phys. Lett., 65(18), 2305 (1994)Google Scholar
4. Lindfors, C.D., Jones, K.S., Law, M.E., Downey, D.F., and Murto, R.W. Si Front End Processing-Physics and Technology of Dopant-Defect Interactions II, Mat. Res. Soc. Proc., 610,B.10.2.1 (2000)Google Scholar
5. Harrington, W. L., Magee, C. W., Pawlik, M., Downey, D. F., Osburn, C. M., and Felch, S. B., J. Vac. Sci. Technol. B, 16(1), 286 (1998)Google Scholar
6. Osburn, C. M., Downey, D. F., Felch, S. B., and Lee, B. S., 11th Intl. Conf. on Ion Imp. Tech., 607 (1996)Google Scholar
7. Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49(7), 3906 (1978)Google Scholar
8. Drosd, R. and Washburn, J., J. Appl. Phys. 53(1), 397 (1982)Google Scholar
9. Williams, J. S. (Poate, J. M., Foti, G., and Jacobson, D. C., eds.), Surface Modification and Alloying, (Plenum Press, New York, 1982) p. 133 Google Scholar
10. Williams, J. S. and Short, K. T. (Picraux, S. T. and Choyke, W. J., eds.), Metastable Materials Formation by Ion Implantation, (North Holland, New York, 1982) p. 109 Google Scholar
11. Williams, J. S. and Poate, J. M., eds., Ion Implantation and Beam Processing, (Academic Press, New York, 1984) p. 27 Google Scholar
12. Schroder, D. K., Semiconductor Material and Device Characterization, (John Wiley & Sons Inc., New York, 1990) p. 232 Google Scholar