Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T16:30:02.519Z Has data issue: false hasContentIssue false

Basic Science in Silica Glass Polishing

Published online by Cambridge University Press:  25 February 2011

Minoru Tomozawa
Affiliation:
Materials Engineering Department and Center for Integrated ElectronicsRensselaer Polytechnic Institute Troy, NY 12180 USA
Kai Yang
Affiliation:
Materials Engineering Department and Center for Integrated ElectronicsRensselaer Polytechnic Institute Troy, NY 12180 USA
Hong Li
Affiliation:
Materials Engineering Department and Center for Integrated ElectronicsRensselaer Polytechnic Institute Troy, NY 12180 USA
Shyam P. Murarka
Affiliation:
Materials Engineering Department and Center for Integrated ElectronicsRensselaer Polytechnic Institute Troy, NY 12180 USA
Get access

Abstract

Water entered into oxides when the oxides were indented with diamond in the presence of water or water vapor. Similar water entry is expected during silica glass polishing because of the high stress concentration on the glass surface in contact with small abrasive particles. Both chemical and mechanical properties of silica glasses change with water content. Polishing rate of silica in oil-based slurry with diamond abrasive increased with water content in the silica. Since oil has no chemical reactivity with silica, mechanical property degradation with water incorporation must be responsible for the fast polishing rate of the water-containing samples. A plausible mechanism of the polishing of silica is, therefore, water entry into silica under stress and mechanical removal of the altered layer. In the presence of water this process repeats itself.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Kaufmann, F.B., Thompson, D.B., Broadie, R.E., Jaso, M. A., Guthrie, W.L., Pearson, D.J. and Small, M.B., J. Electrochem. Soc. 138, 3460 (1991).CrossRefGoogle Scholar
2 Landis, H., Burke, P., Cote, W., Hill, W., Hoffman, C., Kaanta, C., Koburger, C., Lange, W., Leach, M. and Luce, S., Thin Solid Films 220, 1 (1992).CrossRefGoogle Scholar
3 Izumitani, T., p. 115 in Treatise on Materials Science and Technology, Volume 17, Glass II, Eds. Tomozawa, M. and Doremus, R.H., Academic Press, New York (1979).Google Scholar
4 Cook, L.M., J. Non-Cryst. Solids 120, 152 (1990).CrossRefGoogle Scholar
5 Dunken, H., J. Non-Cryst. Solids 129, 64 (1991).CrossRefGoogle Scholar
6 Hirao, K. and Tomozawa, M., J. Am. Ceram. Soc. 70, 497 (1987).CrossRefGoogle Scholar
7 Tomozawa, M. and Hirao, K., J. Mat. Sci. 6, 867 (1987).Google Scholar
8 Nogami, M. and Tomozawa, M., J. Am. Ceram. Soc. 67, 151 (1984).CrossRefGoogle Scholar
9 Agarwal, A., Tomozawa, M. and Lanford, W.A., J. Non-Cryst. Solids 167, 139 (1994).CrossRefGoogle Scholar
10 Westbrook, J.H. and Jorgenson, P.J.. Trans. AIME 223, 425 (1965).Google Scholar
11 Hanneman, R.E. and Westbrook, J.H., Phil. Mag. 18, 73 (1968).CrossRefGoogle Scholar
12 Kranich, J.F. and Scholze, H., Glastech. Ber. 49, 135 (1976).Google Scholar
13 Gunasekera, S.P. and Holloway, D.G., Phys. Chem. Glasses 14, 45 (1973).Google Scholar
14 Nguyen, A.M. and Murarka, S.P., Vac, J.. Sci. Technol. B8, 533 (1990).Google Scholar
15 Han, W.-T. and Tomozawa, M., J. Am. Ceram. Soc. 73, 3626 (1990).CrossRefGoogle Scholar
16 Neely, J.E. and Mackenzie, J.D., J. Mat. Sci. 3, 603 (1968).CrossRefGoogle Scholar
17 Davis, K.M., Ph.D. thesis, Rensselaer Polytechnic Institute (1994).Google Scholar
18 Bartholomew, R. F., p.75 in Treatise on Materials Science and Technology, vol. 22, Glass III, eds. Tomozawa, M. and Doremus, R.H., Academic Press, New York (1982).Google Scholar
19 Takata, M., Acocella, J., Tomozawa, M. and Watson, E.B., J. Am. Ceram. Soc. 64, 719 (1981).CrossRefGoogle Scholar
20 Tomozawa, M., Erwin, C.Y., Takata, M. and Watson, E.B., J. Am. Ceram. Soc. 65, 182 (1982).CrossRefGoogle Scholar
21 Takata, M., Tomozawa, M., and Watson, E.B., J. Am. Ceram. Soc. 65, C-156 (1982).Google Scholar
22 Acocella, J., Takata, M., Tomozawa, M., Watson, E.B. and Warden, J.T., J. Am. Ceram. Soc. 65, 407 (1982).CrossRefGoogle Scholar
23 Tomozawa, M., Takata, M., Acocella, J., Watson, E.B. and Takamori, T., J. Non-Cryst. Solids 56, 343 (1983).CrossRefGoogle Scholar
24 Tomozawa, M., J. Non-Cryst. Solids 73, 197 (1985).CrossRefGoogle Scholar
25 Ito, S. and Tomozawa, M., J. Am. Ceram. Soc. 64, C-160 (1981).CrossRefGoogle Scholar
26 Walther, J.V. and Helgeson, H.C., Am. J. Sci. 277, 1315 (1977).CrossRefGoogle Scholar
27 Izuminatani, T., quoted in reference [4].Google Scholar
28 Iller, R.K., The Chemistry of Silica, Wiley, New York (1979)Google Scholar