Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T22:18:30.415Z Has data issue: false hasContentIssue false

Atomic-Scale Modeling of the Annihilation of Jogged Screw Dislocation Dipoles

Published online by Cambridge University Press:  15 February 2011

T. Vegge
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark Email: vegge@fysik.dtu.dk Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
O. B. Pedersen
Affiliation:
Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
T. Leffers
Affiliation:
Materials Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark
K. W. Jacobsen
Affiliation:
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Get access

Abstract

Using atomistic simulations we investigate the annihilation of screw dislocation dipoles in Cu. In particular we determine the influence of jogs on the annihilation barrier for screw dislocation dipoles. The simulations involve energy minimizations, molecular dynamics, and the Nudged Elastic Band method. We find that jogs on screw dislocations substantially reduce the annihilation barrier, hence leading to an increase in the minimum stable dipole height.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Rasmussen, T., Vegge, T., Leffers, T., Pedersen, O. B., and Jacobsen, K. W., Phil. Mag. A, (in press).Google Scholar
[2] Duesberry, M. S., Model. Simul. Mater. Sci. Eng., 35, 35 (1998).Google Scholar
[3] Essmann, U. and Mughrabi, H., Phil. Mag. A, 40(6), 731 (1979).Google Scholar
[4] Vegge, T. et al. (to be published).Google Scholar
[5] Mills, G., Jónsson, H. and Schenter, G., Surface Science, 324, 305 (1995).Google Scholar
[6] Jónsson, H., Mills, G. and Jacobsen, K. W., Classical and Quantum Dynamics in Condensed Phase Simulations, edited by Beme, B. J., Ciccotti, G. and Coker, D. F., World Scientific (1998).Google Scholar
[7] Jacobsen, K.W., Norskov, J.K., and Puska, M.J., Phys. Rev. B, 35,7423, (1987).Google Scholar
[8] Jacobsen, K.W., Stoltze, P., and Nørskov, J.K., Surf. Sci., 366, 394, (1996), and references therein.Google Scholar
[9] Kittel, C., Introduction to Solid State Physics, 4th. ed., Wiley, (1971).Google Scholar
[10] Hirth, J.P. and Lothe, J., Theory of Dislocations 2nd. ed., Krieger publ. comp., (1992).Google Scholar
[11] Rosengaard, N. M. and Skriver, H. L., Phys. Rev. B 47, 12865 (1993).Google Scholar
[12] Jónsson, H. and Andersen, H. C., Phys. Rev. Lett. 60, 2295 (1988).Google Scholar
[13] Clarke, A. S. and Jónsson, H., Phys. Rev. E 47, 3975 (1993).Google Scholar
[14] Stoltze, P., Simulation Methods in Atomic-scale Materials Physics (Polyteknisk forlag, 1997).Google Scholar
[15] Rasmussen, T., Mat. Res. Soc. Symp. Proc. Vol. 538, 51 (1999).Google Scholar
[16] Rasmussen, T., Jacobsen, K. W., Leffers, T. and Pedersen, O. B., Phys. Rev. B,56(6), 2977 (1997).Google Scholar
[17] Rasmussen, T., Jacobsen, K. W., Leffers, T., Pedersen, O. B., Srinivasan, S. G. and Jónsson, H., Phys. Rev. Lett., 79(19), 3676 (1997).Google Scholar