Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T14:58:36.153Z Has data issue: false hasContentIssue false

Approaches to High Temperature Contacts to Silicon Carbide

Published online by Cambridge University Press:  15 February 2011

J. M. Delucca
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
S. E. Mohney
Affiliation:
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

Metallurgical reactions between contacts and SiC can alter the electrical characteristics of the contacts, either beneficially or detrimentally. Simultaneously, consumption of the underlying SiC epilayer takes place. During prolonged operation at elevated temperature, contacts that are not in thermodynamic equilibrium with SiC may continue to react with it. For this reason, interest in thermally stable carbide and silicide contacts to SiC has been growing. To select appropriate carbides or silicides for further study, however, knowledge of the transition metal-silicon-carbon (TM-Si-C) phase equilibria is required. A significant body of literature on the TM-Si-C systems exists and should therefore be examined in the context of electronic applications. In this paper, phase equilibria for representative TM-Si-C systems are presented, trends in these systems with respect to temperature and position of the metal in the periodic table are discussed, and attractive carbide and silicide contacts and processing schemes for thermally stable contacts are highlighted.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Porter, L.M. and Davis, R.F., Mater. Sci. Eng. B34, 83 (1995) and references therein.Google Scholar
2. Edmond, J.A., Ryu, J., Glass, J.T., and Davis, R.F., J. Electrochem. Soc. 135, 359 (1988).Google Scholar
3. Matus, L.G., Powell, J.A., and Petit, J.B., NASA Tech. Mem. 104398, June 1991.Google Scholar
4. Parsons, J.D., Kruaval, G.B., and Chaddha, A.K., Appl. Phys. Lett. 65, 2075 (1994).Google Scholar
5. Chaddha, A.K., Parsons, J.D., and Kruaval, G.B., Appl. Phys. Lett. 66, 760 (1995).Google Scholar
6. Anikin, M.M., Rastegaeva, M.G., Syrkin, A.L, and Chuiko, I.V., in Amorphous and Crystalline Silicon Carbide III, ed. Harris, G.L., Spencer, M.G., and Yang, C.Y., Springer, Berlin, 1992, p. 183.Google Scholar
7. Handbook of Ternary Alloy Phase Diagrams, Villars, P., Prince, A, and Okamoto, H., ASM International, Materials Park, OH, 1995.Google Scholar
8. Journal of Phase Equilibria, ASM International, Materials Park, OH (refer to end-of-year indices).Google Scholar
9. Brewer, L. and Krikorian, O., J. Electrochem. Soc., New York 103, 38 (1956).Google Scholar
10. Searcy, A.W. and Finnie, L.N., J. Am. Ceram. Soc. 45, 268 (1962).Google Scholar
11. Schuster, J.C., Int. J. Refract. Met. Hard Mater. 12, 173 (1994).Google Scholar
12. Schuster, J.C., J. Chim. Phys. 90, 373 (1993).Google Scholar
13. Schlesinger, M.E., J. Phase Equilibria 15, 90 (1994).Google Scholar
14. Materials Thermochemistry,Kubaschewski, O., Alcock, C.B., Spencer, P.J., Pergamon Press, New York, 1993, pp. 258323.Google Scholar
15. Properties of Metal Silicides, ed. by Maex, K. and Rossum, M. van, Inspec, London, 1995, pp. 3157.Google Scholar
16. Cohesion in Metals: Transition MetalAlloys, F.R de Boer, Boom, R., Mattens, W.C.M., Miedema, A.R., and Niessen, A.K., North-Holland Physics Publishing, The Netherlands, 1989.Google Scholar
17. Refractory Materials (Vol. 2), Storms, E.K., Academic Press, New York, 1967.Google Scholar
18.Silicidesfor VLSIApplications, Murarka, S.P., Academic Press, Orlando, 1983, pp. 2978.Google Scholar
19. Chen, J.S., Kolawa, E., Nicolet, M. A., Baud, L., Jaussaud, C., Madar, R., and Bernard, C., J. Appl. Phys. 75, 897 (1994).Google Scholar
20. Basin, Y.M., Kuznetsov, V.N., Markov, V.T., and Guzei, L.S., Russ. Met. 4, 197 (1988).Google Scholar
21. Ishida, K., Nishizawa, T., and Schlesinger, M.E., J. Phase Equilibria 12, 578 (1991).Google Scholar
22. Nash, P. and Nash, A., Bull. Alloy Phase Diagrams 8, 6 (1987).Google Scholar
23. Crofton, J., McMullin, P.G., Williams, J.R., and Bozack, M.J., J. Appl. Phys. 77, 1317 (1995).Google Scholar
24. Searcy, A.W., J. Am. Ceram. Soc. 40, 431 (1957).Google Scholar
25. Handbook of Thermionic Properties, Fomenko, V.S., ed. Samsonov, G.V.., Plenum Press Data Division, New York, 1966, pp. 93105.Google Scholar
26. VLSI Electronics Microstructure Science (Vol. 6), ed. Einspruch, N. G., Academic Press, New York, 1983, pp. 415–23.Google Scholar
27. Wakelkamp, W.J.J., van Loo, F. J.J., and Metselaar, R., J. Europ. Ceram. Soc. 8, 135 (1991).Google Scholar
28. Rudy, E., Compendium of Phase Diagram Data, Ternary Phase Equilibria in Transition Metal-Boron-Carbon-Silicon Systems, Part V, AFML-TR-65-2, AD 689843, (1969).Google Scholar
29. Touanen, M., Teyssandier, F., and Ducarroir, M., J. Mater. Sci. Let. 8, 98 (1989).Google Scholar
30. Brukl, C.E., Technical Report, AD 489752, US Clearinghouse Fed. Sci. Tech. Inform., AD, 1966, pp. 37–8.Google Scholar
31. Pellegrini, P.W., Giessen, B.C., and Feldman, J.M., J. Electrochem. Soc. 119, 535 (1972).Google Scholar
32. Gasik, M.I. and Em, P.A., Izvestiya Vysshikh Uchebnykh Zavedenii, Chernaya Metallurgiya 19, 93 (1976).Google Scholar
33. van Loo, F. J.J., Smet, F.M., Rieck, G.D., Verspui, G., High Temp. High Pres. 14, 25 (1982).Google Scholar
34. Guiot, J.M., Silicates Industriels 31, 363 (1966).Google Scholar
35. Nowotny, H., Parthd, E., Kieffer, R., and Benesovsky, F., Monatsh. Chem. 85, 255 (1954).Google Scholar
36. Schiepers, R.C.J., van Loo, F.J.J., and de With, G., J. Am. Ceram. Soc. 71, C284 (1988).Google Scholar
37. Okamoto, H., J. Phase Equilibria 16, 473 (1995).Google Scholar