Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T17:21:17.779Z Has data issue: false hasContentIssue false

Applications of Positron Annihilation to the Monitoring of Fatigue Damage and Creep in Technological Components

Published online by Cambridge University Press:  21 February 2011

A J Allen
Affiliation:
Materials Physics & Metallurgy Division, B521.2
C F Coleman
Affiliation:
Nuclear Physics Division, B7.21, Harwell Laboratory, Didcot, Oxfordshire OX11 ORA, UK
S J Conchie
Affiliation:
Nuclear Physics Division, B7.21, Harwell Laboratory, Didcot, Oxfordshire OX11 ORA, UK
F A Smith
Affiliation:
Materials Physics & Metallurgy Division, B521.2
Get access

Abstract

This paper reviews the use of positron annihilation methods for technological applications, particularly the use of positron annihilation gamma ray lineshape analysis for the non-destructive assessment of static deformation, machining processes, high cycle fatigue and creep in metal and alloy componen:s. The paper includes description of a transportable lineshape analysis system recently developed for field applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Berko, S., in Positron solid-state physics, edited by Brandt, W. (North Holland Publishing Company, Amsterdam, 1983) pp. 64145.Google Scholar
2. Mackenzie, K., in Positron solid-state physics, edited by Brandt, W. (North Holland Publishing Company, Amsterdam, 1983) pp. 196264.Google Scholar
3. Brandt, W., Scientific American 23 (1), 34 (1975).CrossRefGoogle Scholar
4. Beling, C.D. and Charlton, M, Contemporary Physics 28 (3), 241266 (1987).CrossRefGoogle Scholar
5. Hawkesworth, M.R., O'Dwyer, M.A., Walker, J., Fowles, P., Heritage, J., Stewart, P.A.E., Witcomb, R.C., Bateman, J.E., Connolly, J.F. and Stephenson, R., Nucl. Instr. Meth. A253, 145157 (1986).CrossRefGoogle Scholar
6. Coleman, C.F., NDT International 10 (5) 227234 and 235–239, (1977).CrossRefGoogle Scholar
7. Hughes, A.E., Materials in Engineering 2 (34) (1980).Google Scholar
8. Granatelli, L. and Lynn, K.G., Brookhaven National Laboratory report, BNL-28795 (1981). Also see: O. Brummer and G. Dlubeck, Mikrochimica Acta (Wien) Supp 11, 187–204 (1985).Google Scholar
9. Dupasquier, A., in Positron solid-state physics, edited by Brandt, W. (North Holland Publishing Company, Amsterdam, 1983) pp. 510564.Google Scholar
10. Coleman, C.F., UK Patent application no. GB 2179829A, (July 1987).Google Scholar
11. Beynon, T.D., Hawkesworth, M.R., Matthews, T.R. and O'Dwyer, M.A., Nucl. Instr. and Meth. - in press (1988).Google Scholar
12. West, R.N. in Positrons in solids edited by Hautojarvi, P. (Springer-Verlag, Berlin, 1979) pp. 89139.CrossRefGoogle Scholar
13. Allen, A.J., Coleman, C.F., Conchie, S.J., Hutchings, M.T. and Smith, F.A. in Proc 4th European NDT Conference, London, 1987, (in press) (Pergamon, Oxford 1988); also Harwell report MPD/NBS 331 (1987).Google Scholar
14. Hughes, A.E., Coleman, C.F. and Smith, F.A. in Review of progress in quantitative nondestructive evaluation, edited by Thompson, O. and Chimenti, D.E. (Plenum Publishing Corporation, New York, 1982) I pp. 661664.CrossRefGoogle Scholar
15. Smith, R.L., Metals and Materials 3 (4) 187191. (1987).Google Scholar
16. Allen, A.J., Buttle, D.J, Coleman, C.F., Smith, F.A. and Smith, R.L. EPRI report NP-5590 (Electric Power Research Institute, Palo Alto, California, 1987).Google Scholar