Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T12:01:06.128Z Has data issue: false hasContentIssue false

Anisotropic Transport in InGaAs/GaAs Heterostructures Grown by Movpe

Published online by Cambridge University Press:  28 February 2011

Qing Sun
Affiliation:
Division of Physics, NRC 100 Sussex Dr. Ottawa, Canada
D. Morris
Affiliation:
Division of Physics, NRC 100 Sussex Dr. Ottawa, Canada
C. Lacelle
Affiliation:
Division of Physics, NRC 100 Sussex Dr. Ottawa, Canada
A.P. Roth
Affiliation:
Division of Physics, NRC 100 Sussex Dr. Ottawa, Canada
Get access

Abstract

Anisotropic electron transport has been observed in InxGa1-xAs/GaAs heterostructures grown by MOVPE on (001) and intentionally misoriented GaAs substrates. The low field electron mobilities in two perpendicular directions are found to be higher in the [110] direction than in the [110] direction. The ratio of µ[110][110] derived from Hall measurements is related to the degree of substrate misorientation as well as epilayer composition. Finally, the photoluminescence spectra are polarized along orthogonal <110> directions. These anisotropic properties are directly related to the anisotropy of [110] and [110] dislocations due to lattice mismatch between the substrates and the layers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Fritz, I.J., Picraux, S.T., Dawson, L.R., and Drummond, T.J.Appl. Phys. Lett. 46 967 (1985)Google Scholar
2Fritz, I.J., Gourley, P.L., and Dawson, L.R.Appl. Phys. Lett. 51 1004 (1987)Google Scholar
3Fritz, I.J., Doyle, B.L., Schirber, J.E., Jones, E.D., Dawson, L.R. and Drummond, T.J.Appl. Phys. Lett. 49 581 (1986)Google Scholar
4Radulescu, D.C., Wicks, G.W., Schaff, W.J., Calawa, A.R. and Eastman, L.F.J. Appl. Phys. 61 2301 (1987)Google Scholar
5Radulescu, D.C., Wicks, G.W., Schaff, W.J., Calawa, A.R. and Eastman, L.F.J. Appl. Phys. 63 5115 (1988)Google Scholar
6Montgomery, H.C.J. Appl. Phys. 42 2971 (1971)Google Scholar
7Hornstra, J. and Van der Pauw, L.J.J. Electro. Control. 7 169 (1959)Google Scholar
8Roth, A.P., Sacilotti, M.A., Masut, R.A., Morris, D., Young, J., Lacelle, C.Fortin, E. and Brebner, J.L.Can. J. Phys. 67 330 (1989)Google Scholar
9Matthews, J.W. and Blakeslee, A.E.J. Cryst. Growth 27 118 (1974)Google Scholar
10Dodson, B.W. and Tsao, J.Y.Appl. Phys. Lett. 51 1325 (1987)Google Scholar
11Dodson, B.W.Appl. Phys. Lett. 53 394 (1988)Google Scholar
12Hagen, W. and Strunk, H.Appl. Phys. 17 85 (1978)Google Scholar
13Rajan, K. and Denhoff, M.J. Appl. Phys. 62 1710 (1987)Google Scholar
14Abrahams, M.S., Blanc, J. and Burocchi, C.J.Appl. Phys. Lett. 21 185 (1972)Google Scholar
15Breen, K.R., Uppal, P.N. and Ahearn, J.S.J. Vac. Sci. and Tech. B7 758 (1989)Google Scholar
16Fitzgerald, E.A., Ast, D.G., Kirchner, P.D., Petit, G.D. and Woodall, J.M.J. Appl. Phys. 63 693 (1988)Google Scholar
17Fitzgerald, E.A., Ashizawa, Y., Eastman, L.F. and Ast, D.G.J. Appl. Phys. 63 4995 (1988)Google Scholar
18Fischer, R. and Morkoc, H.J. Appl. Phys. 60 1640 (1986)Google Scholar
19Otsuka, N., Choi, C., Nakamura, Y., Nagakura, S., Fischer, R., Peng, C.K. and Morkoc, H.Appl. Phys. Lett. 49 277 (1986)Google Scholar