Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T01:10:05.106Z Has data issue: false hasContentIssue false

Volume-Based Considerations for the Metal-Insulator Transition of CMR Oxides

Published online by Cambridge University Press:  10 February 2011

J. J. Neumeier
Affiliation:
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
A. L. Cornelius
Affiliation:
Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
M. F. Hundley
Affiliation:
Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
K. Andres
Affiliation:
Walther-Meissner-Institut fuer Tieftemperaturforschung, Walther-Meissner-Str. 8, D85748 Garching, Germany
K. J. McClellan
Affiliation:
Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Get access

Abstract

The sensitivity of ρ to changes in volume which occur through: (1) applied pressure, (2) variations in temperature, and (3) phase transitions, is evaluated for some selected CMR oxides. It is argued that the changes in volume associated with (2) and (3), which are referred to as self pressures, are equivalent in magnitude to changes in volume resulting from pressures in the range of 0.18 to 0.45 GPa. Through consideration of thermal expansion and electrical resistivity data, it is shown that these self pressures are responsible for large features in the electrical resistivity and are an important component for the occurrence of the metallicity below Tc. It is suggested that this is a manifestation of a strong volume dependence of the electron phonon coupling in the CMR oxides.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jonker, G. H. and Van Santen, J. H., Physica 16, 337 (1950).Google Scholar
2. Van Santen, J. H. and Jonker, G. H., Physica 16, 599 (1950).Google Scholar
3. Zener, C., Phys. Rev. 81, 440 (1951); 82, 403 (1951).Google Scholar
4. Volger, J., Physica 20, 49 (1954).Google Scholar
5. Kusters, R. M., Singelton, J., Keen, D. A., McGreevy, R., and Hayes, W., Physica B 155, 362 (1989).Google Scholar
6. von Helmholt, R., Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, 2331 (1993).Google Scholar
7. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, 413 (1994).Google Scholar
8. Hundley, M. F., Hawley, M., Heffner, R. H., Jia, Q. X., Neumeier, J. J., Tesmer, J., Thompson, J. D., and Wu, X. D., Appl. Phys. Lett. 67, 860 (1995).Google Scholar
9. Clausen, K. N., Hayes, W., Keen, D. A., Kusters, R. M., McGreevy, R. L., and Singleton, J., J. Phys. Condens. Matter 1, 2721 (1989).Google Scholar
10. Hundley, M. F. and Neumeier, J. J., Phys. Rev. B 55 (1997) 11511.Google Scholar
11. Jaime, M., Salamon, M. B., Rubinstein, M., Treece, R. E., Horwitz, J. S., and Chrisey, D. B., Phys. Rev. B 54, 11914 (1996);Google Scholar
Jaime, M., Salamon, M. B., Pettit, K., Rubinstein, M., Treece, R. E., Horwitz, J. S., and Chrisey, D. B., Appl. Phys. Lett. 68, 1576 (1996);Google Scholar
Jaime, M., Hardner, H. T., Salamon, M. B., Rubinstein, M., Dorsey, P., and Emin, D., Phys. Rev. Lett. 78, 951 (1997).Google Scholar
12. Billinge, S. J. L., DiFrancesco, R. G., Kwei, G. H., Neumeier, J. J., and Thompson, J. D., Phys. Rev. Lett. 77, 719 (1996).Google Scholar
13. Tyson, T. A., Mustre de Leon, J., Conradson, S. D., Bishop, A. R., Neumeier, J. J., Roder, H., and Zang, Jun, Phys. Rev. B 53, 13985 (1996).Google Scholar
14. Booth, C. H., Bridges, F., Kwei, G. H., Lawrence, J. M., Cornelius, A. L., and Neumeier, J. J., to appear in Phys. Rev. Lett. 80 (1998).Google Scholar
15. Millis, A. J., Littlewood, P. B., and Shraiman, B. I., Phys. Rev. Lett. 74, 5144 (1995).Google Scholar
16. Millis, A. J., Phys. Rev. B 53, 8434 (1996).Google Scholar
17. Roder, H., Zang, J., and Bishop, A. R., Phys. Rev. Lett. 76, 1356 (1996).Google Scholar
18. Millis, A. J., Shraiman, B. I., and Mueller, R., Phys. Rev. Lett. 77, 175 (1996).Google Scholar
19. Zhao, G.-M., Conder, K., Keller, H., and Müller, K. A., Nature 381, 676 (1996).Google Scholar
20. Laukhin, V., Fontcuberta, J., García-Muñoz, J. L., and Obradors, X., Phys. Rev. B 56, R10009 (1997).Google Scholar
21. Schiffer, P., Ramirez, A. P., Bao, W., and Cheong, S.-W., Phys. Rev. Lett. 75, 3336 (1995).Google Scholar
22. In this report, we neglect the formation of cation vacancies incoporate differing Mn valance states as an oxygen deficiency. For details on the defect chemistry of LaMnO3 see: Van Roosmalen, J. A. M. and Cordfunke, E. H. P., J. Solid State Chem. 110, 109 (1994).Google Scholar
23. Neumeier, J. J., Hundley, M. F., Thompson, J. D., and Heffner, R. H., Phys. Rev. B 52, R7006 (1995).Google Scholar
24. Ehrenfest, P., Communications Leiden, Vol. XX, Suppl. 75b, 1993.Google Scholar
25. Hwang, H. Y., Palstra, T. T. M., Cheong, S.-W., and Batlogg, B., Phys. Rev. B 52, 15046 (1995).Google Scholar
26. ΔCp ∞ = TcdM(T)2/dT and is expected to be comparable for A and B since Tc and M(T) are similar.Google Scholar
27. Ramirez, A. P., Schiffer, P., Cheong, S.-W., Chen, C. H., Bao, W., Palstra, T. T. M., Gammel, P. L., Bishop, D. J., and Zegarski, B., Phys. Rev. Lett. 76, 3188 (1996).Google Scholar
28. Cornelius, A. L., motz, S., and Schilling, J. S., Physica B 197, 209 (1992).Google Scholar
29. Darling, T. W., Migliori, A., Moshopoulou, E. G., Trugman, Stuart A., Neumeier, J. J., Sarrao, J. L., Bishop, A. R., and Thompson, J. D., to appear in Phys. Rev. B 57 (1998).Google Scholar
30. Kroeger, F. R. and Swenson, C. A., J. Appl. Phys. 48, 853 (1977).Google Scholar
31. Geschneidner, K. Jr, Solid State Physics 16, 275 (1964).Google Scholar
32. Kwei, G. H., Argyriou, D. N., Billinge, S. J. L., Lawson, A. C, Neumeier, J. J., Ramirez, A. P., Subramanian, M. A., and Thompson, J. D., proceedings of the Spring MRS meeting (1997).Google Scholar
33. Soumura, T., J. Phys. Soc. Jpn 42, 826 (1977);Google Scholar
Wasserman, E. F. in Ferromagnetic Materials. Vol. 5 edited by Buschow, K.H.J. and Wohlfarth, E. P. (Elsevier, Amsterdam, 1990) p. 238.Google Scholar
34. Sundqvist, K., Solid State Commun. 66, 623 (1988);Google Scholar
Sundqvist, B. and Andersson, B. M., Solid State Commun. 76, 1019 (1990).Google Scholar
35. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T., and Tokura, Y., Nature 373 (1995) 407.Google Scholar
36. Moritomo, Y., Asamitsu, A., and Tokura, Y., Phys. Rev. B 51, 16491 (1995).Google Scholar
37. Neumeier, J. J. and Andres, K., in preparation.Google Scholar
38. Zhou, J.-S., Archibald, W., and Goodenough, J. B., Nature 381, 770 (1996).Google Scholar
39. Emin, D., Hillary, M. S., and Liu, N.-L. H., Phys. Rev. B 35, 641 (1987).Google Scholar
40. Arnold, Z., Kamenev, K., Ibarra, M. R., Algarabel, P. A., Marguina, C., Blasco, J., Garcia, J., Appl. Phys. Lett. 67, 2875 (1995).Google Scholar
41. Neumeier, J. J., Cornelius, A. L., and Hundley, M. F., in preparation.Google Scholar