Article contents
Thermodynamics and Kinetics of Crystallization of Amorphous Si and Ge Produced by Ion Implantation
Published online by Cambridge University Press: 25 February 2011
Abstract
Amorphous Si and Ge layers, produced by noble gas (Ar or Xe) implantation of single crystal substrates, have been crystallized in a differential scanning calorimeter (DSC). This technique allows determination of the growth velocity (which is proportional to the rate of heat evolution, ΔHac), and the total enthalpy of crystallization ΔHacAmorphous Ge was found to relax continuously to an amorphous state of lower free energy, with a total enthalpy of relaxation of 6.0 kJ.mole−1 before crystallization started. The regrowth velocity on (100) substrates,measured to be 4.2×1017 exp (−2.17eV/kT)Å/sec, is compared to other determinations. The value of ΔHac was found to be 11.66± 0.7 kJ.mole, in good agreement with ΔHac for amorphous Ge produced by other methods. For Si, ΔHac was determined to be 11.95± 0.7 kJ.mole without any evidence of heat release due to relaxation. The kinetics of crystallization measured by DSC are compared with those determined by other techniques. The effects of the implant profile on the regrowth velocity could also be observed directly in the DSC signal. The more accurate value of ΔHac allowed a more precise determination of the melting temperature of amorphous Si: Taℓ= 1420K.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1984
References
REFERENCES
- 3
- Cited by