Article contents
Synthesis of Zeolite as Ordered Multi-Crystal Arrays using Uniformly Aligned Polyurethane as Templates
Published online by Cambridge University Press: 15 March 2011
Abstract
Two types of glass plates coated with uniformly aligned polyurethane films were produced by repeating the cycles of the alternative exposures of the glass plates to 1,4-phenylene diisocyanate (PDI) and 2-butyne-1,4-diol (BDO) and to PDI and terephthalic acid bis-(2-hydroxy ethyl) ester (TBE) for 500 times at elevated temperatures. The glass plates coated with uniformly aligned poly-(PDI-BDO)500 (500 represents the number of the cycle) produced monolayers of closely packed 2D arrays of silicalite-1 crystals with the average size of 370 × 200 × 500 nm on the glass plates upon immersion of the glass plates into a dense gel consisting of tetraethylorthosilicate (TEOS), tetrapropylammonium hydroxide (TPA+OH-), and water (mole ratio = 7:1.5:330) followed by the hydrothermal reaction at 180°C for 2 h. The silicalite-1 crystals were aligned with the c-axes perpendicular to the substrate plane. Upon switching the polymer from poly-(PDI-BDO)500 to poly-(PDI-TBE)500 the orientations of the silicalite-1 crystals in the 2D arrays changed from c to a axes perpendicular to the substrate. This report therefore demonstrates that the uniformly aligned polyurethane films serve as the templates for the growth of closely packed multi-crystal arrays of silicalite-1 in uniform orientations and the nature of the polyurethane film affects the resulting orientations of the crystals. We propose that the supramolecularly organized organic-inorganic composites consisting of the hydrolyzed organic products and the seed crystals responsible for the above phenomena.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
- 1
- Cited by