Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T10:41:42.026Z Has data issue: false hasContentIssue false

Study of In‐Situ Laser‐Deposition of Superconducting Thin Films by In‐Situ Resistance Measurement

Published online by Cambridge University Press:  28 February 2011

Q.Y. Ying
Affiliation:
State University of New York at Buffalo, Institute on Superconductivity, Amherst, NY. 14260
H.S. Kim
Affiliation:
State University of New York at Buffalo, Institute on Superconductivity, Amherst, NY. 14260
D.T. Shaw
Affiliation:
State University of New York at Buffalo, Institute on Superconductivity, Amherst, NY. 14260
H.S. Kwok
Affiliation:
State University of New York at Buffalo, Institute on Superconductivity, Amherst, NY. 14260
Get access

Abstract

The electric resistance was measured in real time during laser evaporation deposition of superconducting thin films. It was found that different substrates led to different behaviors in the temporal change of the resistance. The results are consistent with the processes of nucleation, interface reaction and bulk‐like growth. Structural transformation was also observed due to oxygen backfilling at the final stage of the deposition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Dijkkamp, D., Venkatesan, T., Wu, X.D., Shaheen, S.A., Jisrawi, N., Min‐Lee, Y.H., Mclean, W.S., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
2 Witanachchi, S., Kwok, H.S., Wang, X.W., and Show, D.T., Appl. Phys. Lett. 52, 234 (1988).Google Scholar
3 Raos, B., Schultz, L., and Endres, G., Appl. Phys. Lett. 52, 1557 (1988).Google Scholar
4 Weimer, Wayne A., Appl. Phys. Lett. 52, 2171 (1988).Google Scholar
5 Auciello, O., Athavale, S., Hankins, O.E., Sito, M., Schreiner, A.F., and Biunno, N., Appl. Phys. Lett. 52, 72 (1988).Google Scholar
6 Dyer, P.E., Greenough, R.D., Issa, A., and Key, P.H., Appl. Phys. Lett. 52, 534 (1988).Google Scholar
7 Ying, Q.Y., Shaw, D.T., And Kwok, H.S., Appl. Phys. Lett. 52, 1762 (1988).Google Scholar
8 Zheng, J.P., Ying, Q.Y., Witanachchi, S., Huang, Z.Q., Shaw, D.T., and Kwok, H.S., Appl. Phys. Lett. 51, 945 (1989).Google Scholar
9 Eryu, O., Murakami, K., Masuda, K., Kasuya, A., and Nishina, Y., Appl. Phys. Lett. 54, 2716 (1989).Google Scholar
10 Grader, G.S., Gallagher, P.K., Thomson, J., and Gurvitch, M., Appl. Phys. A 45, 179 (1988).Google Scholar
11 Yamaguchi, S., Terabe, K., Imai, A., and Iguchi, Y., Jpn. J. Appl. Phys. 22, L220 (1988).Google Scholar
12 Rosenthal, P.A., Matijsevic, V., Shinohara, K., Missert, N. Shinohara, Hammond, R., and Beasley, M.R., Bull. Am. Phys. Soc. 24, 604 (1989).Google Scholar
13 Ying, Q.Y., Kim, H.S., Shaw, D.T., and Kwok, H.S., Appl. Phys. Lett. 55, 1041 (1989).Google Scholar
14 See for example, Barbee, T.W., Spaepen, F. and Greer, L., eds. Multilayers: Synthesis, Properties and Nonelectronic Applications, MRS Proceedings, Pittsburgh, 1988.Google Scholar
15 Cheung, C.T. and Ruckenstein, E., J. Mater. Res., 4, 1 (1989).Google Scholar
16 Huang, D.M., Ying, Q.Y., and Kwok, H.S., unpublished.Google Scholar
17 Tellier, C.R. and Tosser, A.J., Size Effect in Thin Films, Elsevier, Amsterdam, 1982.Google Scholar
18 Yoshida, A., Tamura, H., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 52, 811 (1988).Google Scholar
19 Fiory, A.T., Gurvitch, M., Cava, R.J., and Espinosa, G.P., Phys. Rev. B36, 7262 (1987).Google Scholar
20 Cave, R.J., Batlogg, B., Chen, C.H., Rietman, E.A., Zahurak, S.M., and Werder, D., Phys. Rev. E26, 5719 (1987).Google Scholar
21 Bormann, R. and Nolting, J., Appl. Phys. Lett. 54, 2148 (1989).Google Scholar