Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-18T16:43:23.751Z Has data issue: false hasContentIssue false

Structural Properties of (GaIn)(AsN)/GaAs MQW Structures Grown by MOVPE

Published online by Cambridge University Press:  03 September 2012

C. Giannini
Affiliation:
PASTIS-CNRSM, I-72100 Brindisi, Italy;
E. Carlino
Affiliation:
PASTIS-CNRSM, I-72100 Brindisi, Italy;
L. Tapfer
Affiliation:
PASTIS-CNRSM, I-72100 Brindisi, Italy;
F. Höhnsdorf
Affiliation:
Materials Science Center, Philipps-University, D-35032 Marburg, Germany
J. Koch
Affiliation:
Materials Science Center, Philipps-University, D-35032 Marburg, Germany
W. Stolz
Affiliation:
Materials Science Center, Philipps-University, D-35032 Marburg, Germany
Get access

Abstract

In this work, we investigate the structural properties of (GaIn)(AsN)/GaAs multiplequantum wells (MQW) grown at low temperature by metalorganic vapour phase epitaxy. The structural properties, in particular the In- and N-incorporation, the lattice strain (strain modulation), the structural perfection of the metastable (GaIn)(AsN) material system and the structural quality of the (GaIn)(AsN)/GaAs interfaces are investigated by means of high-resolution x-ray diffraction, transmission electron microscopy (TEM), and secondary ion mass spectrometry. We demonstrate that (GaIn)(AsN) layers of high structural quality can be fabricated up to lattice mismatches of 4%. Our experiments reveal that N and In atoms are localized in the quaternary material and no evidences of In-segregation or N-interdiffusion could be found. TEM analyses reveal a low defect density in the highly strained layers, but no clustering or interface undulation could be detected. High-resolution TEM images show that (GaIn)(AsN)/GaAs interfaces are slightly rougher than GaAs/(GaIn)(AsN) ones.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bellaiche, L., Wie, S.H., Zunger, A., Phys. Rev., B54, 17568 (1996).Google Scholar
2. Sakai, S., Ueta, Y., Terauchi, Y., Jpn. J. Appl. Phys., 32, 4413 (1993).Google Scholar
3. Ellmers, C., Höhnsdorf, F., Koch, J., Agert, C., Leu, S., Karaiskaj, D., Hofmann, M., Stolz, W., Rühle, W.W., Appl. Phys. Lett., 74. 2271 (1999).Google Scholar
4. Kurtz, S.R., Allerman, A.A., Jones, E.D., Gee, J.M., Banas, J.J., Hammons, B.E., Appl. Phys. Lett., 74, 729 (1999).Google Scholar
5. Heroux, J.B., Yang, X., Wang, W.I., Appl. Phys. Lett., 75, 2716 (1999).Google Scholar
6. Behbehani, M.K., Piner, E.L., Liu, S.X., El-Masry, N.A., Bedair, S.M., Appl. Phys. Lett., 75, 2202 (1999)Google Scholar
7. Beresford, R., Stevens, K.S., Schwartzman, A.F., J.Vac Sci Technol.,B16,1293 (1998).Google Scholar
8. Xin, H.P., Kavanagh, K.L., Zhu, Z.Q., Tu, C.W., Appl. Phys. Lett., 74, 2337 (1999).Google Scholar
9. Tapfer, L., Ospelt, M., Känel, H. von, J. Appl. Phys., 67, 1298 (1990).Google Scholar
10. Tapfer, L., Caro, L. De, Giannini, C., Schönherr, H.-P., Ploog, K.H., Solid State Commun., 98, 599 (1996).Google Scholar
11. Barber, D.G., Ultramicroscopy, 52, 101 (1993).Google Scholar
12. Gerardi, C., Giannini, C., Passaseo, A., Tapfer, L., J.Vac.Sci Technol.,B15, 2037 (1997).Google Scholar
13. Xin, H.P., Tu, C.W., Appl. Phys. Lett., 72, 2442 (1998).Google Scholar
14. Pan, Z., Miyamoto, T., Schlemker, D., Sato, S., Koyama, F., Iga, K., J. Appl. Phys., 84, 6409 (1998).Google Scholar
15. Chao, Kuo-Jen, Liu, Ning, Shih, Chih-Kang, Gotthold, D.W., Streetman, B.G., Appl. Phys. Lett., 75, 1703 (1999).Google Scholar