Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-12-04T23:06:17.606Z Has data issue: false hasContentIssue false

Resolution Performance of Programmable Proximity Aperture MeV Ion Beam Lithography System

Published online by Cambridge University Press:  01 February 2011

Sergey Gorelick
Affiliation:
gorliks@phys.jyu.fi, University of Jyväskylä, Physics, Survontie 9, POBox 35(FL), Jyväskylä, 40014, Finland, +358-440820306
Timo Sajavaara
Affiliation:
timo.sajavaara@jyu.fi, University of Jyväskylä, Dept. of Physics, Jyväskylä, 40014, Finland
Mikko Laitinen
Affiliation:
mikko.laitinen@jyu.fi, University of Jyväskylä, Dept. of Physics, Jyväskylä, 40014, Finland
Nitipon Puttaraksa
Affiliation:
niputtar@cc.jyu.fi, Chiang Mai University, Dept. of Physics, Chiang Mai, 50200 (FNRF), Thailand
Harry J. Whitlow
Affiliation:
Harry_J.Whitlow@whitlow.se, University of Jyväskylä, Dept. of Physics, Jyväskylä, 40014, Finland
Get access

Abstract

An ion beam lithography system for light and heavy ions has been developed at the University of Jyväskylä's Accelerator Laboratory. The system employs a programmable proximity aperture to define the beam. The proximity aperture is made up of four Ta blades with precise straight edges that cut the beam in the horizontal and vertical directions. The blade positions and dimensions are controlled by a pair of high-precision linear-motion positioners. The sample is mounted on a X-Y-Z stage capable of moving with 100 nm precision steps under computer control. The resolution performance of the system is primarily governed by the proximity aperture. Pattern edge sharpness is set by the beam divergence, aperture blade straightness, and secondary and scattered particles from the aperture blade edges. Ray tracing simulations using the object oriented toolkit GEANT4 were performed to investigate the beam spatial resolution on the sample defined by the proximity aperture. The results indicate that the edge-scattering does not significantly affect the pattern edge sharpness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Watt, F., Bettiol, A.A., Kan, J.A. van, Teo, E.J., Breese, M.B.H., International Journal of Nanoscience 4, 269 (2005).Google Scholar
2. Kan, J.A. van, Bettiol, A.A., Watt, F., Nano Letters 6, 579 (2006).Google Scholar
3. Kan, J.A. van, Shao, P.G., Ansari, K., Bettiol, A.A., Watt, F., Microsystem Technologies 13, 431 (2006).Google Scholar
4. Ziegler, J.F., SRIM-2006, from http://www.SRIM.org Google Scholar
5. Erps, J.V. et al. , IEEE Photonics Technologiy Letters 18, 1165 (2006).Google Scholar
6. Taylor, M.L., Alves, A., Reichart, P., Franich, R.D., Rubanov, S., Johnston, P., Jamieson, D.N., Nucl. Instr. and Meth. B (2007), doi:10.1016/j.nimb.2007.02.057.Google Scholar
7. Gorelick, S., Ylimäki, T., Sajavaara, T., Laitinen, M., Sagari, A. A.R., Whitlow, H.J., Nucl. Instr. and Meth. B (2007), doi:10.1016/j.nimb.2007.01.260.Google Scholar
8. Gorelick, S., Rahkila, P., Sagari, A. R., A., Sajavaara, T., Cheng, S., Karlsson, L.B., van, J.A. , Kan, Whitlow, H.J., Nucl. Instr. and Meth. B (2007), doi:10.1016/j.nimb.2007.02.008.Google Scholar
9. Agostinelli, S. et al. , Nucl. Instr. and Meth. A 506, 250 (2003); from http://geant4.web.cern.ch/geant4/ Google Scholar
10. Incerti, S., Habchi, C., Moretto, Ph., Olivier, J., Seznec, H., Nucl. Instr. and Meth B 249, 738 (2006).Google Scholar
11. Incerti, S., Barbaret, Ph., Courtois, B., Michelet-Habchi, C., Moretto, Ph., Nucl. Instr. and Meth. B 210, 92 (2003).Google Scholar
13.ROOT – an object-oriented data analysis framework, from http://root.cern.ch Google Scholar