Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T13:10:58.826Z Has data issue: false hasContentIssue false

Recent Developments in Organically Doped Sol-Gel Sensors: A Microns-Scale Probe; Successful Trapping of Purified Polyclonal Antibodies; Solutions to the Dopant-Leaching Problem

Published online by Cambridge University Press:  21 February 2011

N. Aharonson
Affiliation:
Institute of Plant Protection, Volcani Center, ARO, Beit Dagan 50250, Israel; and Institutes of
M. Altstein
Affiliation:
Institute of Plant Protection, Volcani Center, ARO, Beit Dagan 50250, Israel; and Institutes of
G. Avidan
Affiliation:
Applied Physics and of
D. Avnir
Affiliation:
Applied Physics and of
A. Bronshtein
Affiliation:
Institute of Plant Protection, Volcani Center, ARO, Beit Dagan 50250, Israel; and Institutes of
A. Lewis
Affiliation:
Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
K. Liberman
Affiliation:
Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
M. Ottolenghi
Affiliation:
Applied Physics and of
Y. Polevaya
Affiliation:
Applied Physics and of
C. Rottman
Affiliation:
Applied Physics and of
J. Samuel
Affiliation:
Applied Physics and of
S. Shalom
Affiliation:
Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
A. Strinkovski
Affiliation:
Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
A. Turniansky
Affiliation:
Applied Physics and of
Get access

Abstract

We describe recent advances made in our laboratories in the general field of organically and bio-organically doped sol-gel sensors. The developments described are: (a) The first miniaturization of a sol-gel sensor down to the microns scale, with potential applications to near-field optical microscopy, using a fluorescent pH-indicator. (b) The first successful sol-gel encapsulation of purified polyclonal antibodies, and in particular an anti-nitroaromatics immunoglobulin, with which selective sensing of nitroaromatics, an important class of environmental pollutants, was demonstrated, (c) The leaching problem, occasionally encountered in doping procedures, is solved by two methodologies: First, TMOS polymerization at high acidity and low water content was found to result in non-leachable yet reactive matrices, as demonstrated with O2 sensing by excited state pyrene and with H+ sensing by excited state pyranine; and second, doping with molecules capable of forming a covalent bond within the encapsulating cage results in the permanent anchoring of the dopant. Thus, Methyl-Red, a pH indicator, was derivatized with a silylating residue, and a polymerizing TMOS was doped with it forming a pH-shifted indicator. With both methodologies, leachability was practically zero.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Sol-Gel Optics–Processing and Applications, edited by Klein, L.C., (Kluwer, New York, 1994).Google Scholar
2 Sol-Gel Optics II, edited by McKenzie, J.D., SPIE Proc. Ser. 1758 (1992).Google Scholar
3 Rosenfeld, A., Avnir, D. and Blum, J., J. Chem. Soc. Chem. Comra. 1993, 583.Google Scholar
4 Slama-Schwok, A., Ottolenghi, M. and Avnir, D., Nature, 355, 240 (1992).Google Scholar
5 Audebert, P., Démaille, C., and Sanchez, C., Chem. Mat. 5, 911 (1993); V. Glezer and O. Lev, J. Am. Chem. Soc., 115, 2533 (1993).Google Scholar
6 E.g., Kurokawa, Y., Sano, T., Ohta, H., Nakagawa, Y., Biothec. Bioeng. 42, 394 (1993).Google Scholar
7 Lev, O., Analysis, 20, 543 (1992).Google Scholar
8 O. Lev et al., to be published.Google Scholar
9 E.g., Liu, H.Y-, Switalski, S.C., Coltrain, B.K. and Merkel, P.B., Appl. Spectr. 46, 1266 (1992); B.D. MacCraith, et. al., Analyst 118, 385 (1993).Google Scholar
10 E.g., Kuselman, I., Kuyavskaya, B.I. and Lev, O., Anal. Chim. Acta. 256, 65 (1992).Google Scholar
11 Shtelzer, S. and Braun, S., Biotech. Appl. Biochem. 1994, in press.Google Scholar
12 E.g., (a) Kraus, S.C., Czolk, R., Reichert, J. and Ache, H.J., Sens. Actuators B, 15–16, 199 (1993); (b) C. Rottman, et al., Mat. Lett. 13, 293 (1992); (c) O.S. Wolfbeis, N.V. Rodriguez and T. Werner, Mikrochim. Acta, 108, 133 (1992).Google Scholar
13 Laclan, P. et al. , Ref. 2, p. 464.Google Scholar
14 Chernyak, V., Reisfeld, R., Gvishi, R. and Venzky, D., Sens. Mater. 2, 117 (1990); R. Klein and E. Voges, Sens. Actuators B, 11, 221 (1993).Google Scholar
15 Dulebohn, J.I., Haefner, S.C., Berglund, K.A. and Dunbar, K.R., Chem. Mater. 4, 506 (1992).Google Scholar
16 Eguchi, K., Hashiguchi, T., Sumioshy, K. and Arai, H., Sens. Actuators B1, 154 (1990).Google Scholar
17 Lewis, A. and Liberman, K., Anal. Chem. 63, 625A (1991); Nature, 354, 214 (1991).Google Scholar
18 Liberman, K. and Lewis, A., Appl. Phys. Lett., 62 1 (1993).Google Scholar
19 Kaufman, V.R., Avnir, D., Pines-Rojanski, D. and Huppert, D., J. Non-Cryst. Solids, 99, 379 (1988).Google Scholar
20 Tan, W., Shi, Z.-Y. and Kopelaman, R., Anal. Chem. 64, 2985 (1992).Google Scholar
21 Avnir, D. and Kaufman, V.R., J. Non-Cryst. Solids, 192, 551 (1987).Google Scholar
22 For a recent review on Sonogels, see. Zarzycki, J., Heterogen. Chem. Rev. 1, (1994), in press.Google Scholar
23 Samuel, J. et al. , preprint, 1994.Google Scholar
24 Van Emon, M.J., Seiber, N.J. and Hammock, D.B., Anal. Methods Pest. Plant Growth Reg., 17, 217263 (1989); J.M. Van Emon and R.O. Muraraa, ACS Symp. Ser. 442, 229 (1990); M. Vanderlaan, L.H. Stanker, B.E. Watkins and D.W. Robert, ACS Symp. Ser. 451, 374 (1990).Google Scholar
25 Eck, D.L., Kurth, M.J. and Macmillan, C., ACS Symp. Ser. 442, 79094 (1990).Google Scholar
26 Levsen, K., Mussmann, P., Berger-Preiss, E., Preiss, A., Velrner, D. and Wunsch, G., Acta Hydrochim. Hydrobiol. 21, 153166 (1993).Google Scholar
27 Wilcheck, M., Miron, T. and Kohn, J., Methods in Enzymology, 104, 3105 (1984).Google Scholar
28 Braun, S., Rappoport, S., Zusman, R., Avnir, D. and Ottolenghi, M., Mater. Lett. 10, 1, (1990).Google Scholar
29 Wang, R., Narang, U., Prasad, P.N. and Bright, F.V., Anal. Chem., 65, 2671 (1993).Google Scholar
30 Details will be published elsewhere: Altstein, M., et al. , 1994.Google Scholar
31 Samuel, J., Polevaya, Y., Ottolenghi, M. and Avnir, D., Chem. Mater., 6, (1994), in press.Google Scholar
32 Sobolik, J.L., Ludlow, D.K. and Hesserick, W.L., Fuel 71, 1195 (1991); M. Jaroniec and R. Madey, Physical Adsorption on Heterogeneous Solids, Elsevier, Amsterdam, (1988).Google Scholar
33 Sharp, K.G., J. Sol-Gel Sei. Tech., 2, 1994, in press.Google Scholar
34 Fahrenholta, W.G., Smith, D.M. and Hua, D.-W., J. Non-Cryst. Sol. 144, 45 (1992).Google Scholar
35 Samuel, J., Avnir, D. and Ottolenghi, M., J. Phys. Chem., 96, 6398 (1992).Google Scholar
36 See Proceedings of this Symposium.Google Scholar
37 Severin-Vantilt, M.M.E. and Oomen, E.W.J.L., J. Non-Cryst. Solids, 159, 38 (1993).Google Scholar