Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-18T18:43:23.466Z Has data issue: false hasContentIssue false

Raman Characterization of InSb/GaAs Grown by Metalorganic Magnetron Sputtering

Published online by Cambridge University Press:  28 February 2011

Z. C. Feng
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
S. Perkowitz
Affiliation:
Department of Physics, Emory University, Atlanta, GA 30322
T. S. Rao
Affiliation:
Laboratory for Microstructural Science, National Research Council, 100 Sussex Drive, Ottawa K1A OR6, Canada
J. B. Webb
Affiliation:
Laboratory for Microstructural Science, National Research Council, 100 Sussex Drive, Ottawa K1A OR6, Canada
Get access

Abstract

The new technique of metalorganic magnetron sputtering (MOMS) produces high-quality (100) epitaxial InSb films on (100) GaAs substrates, despite the large 14.6% lattice mismatch between InSb and GaAs. We have used Raman scattering to examine MOMS-grown InSb films of thicknesses 0.17 - 2.67 µm, and commercial bulk InSb. We observe the longitudinal optical (LO) phonon peak, and the second order 2LO peak, which is enhanced by outgoing resonance with the E1 + Δ1, gap of InSb. The half-widths and intensities of these bands are related to sample quality as a function of film thickness and to the role of biaxial stress in the InSb film.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Harbeke, G., Madelung, O. and Rossler, U., in LANDOLT-BORNSTEIN Numerical Data and Functional Relationships in Science and Technology, New Series, chief-edited by K.H. Hellwege, Vol. III/17a, Physics of Group IV Elements and III-V Compounds, edited by O. Madelung, Springer-Verlag, Berlin, p. 310, 1982.Google Scholar
2Rao, T. S., Webb, J. B., Houghton, D. C., Baribeau, J. M., Moore, W. T. and Noad, J. P., Appl. Phys. Lett. 53, 51 (1988).Google Scholar
3Webb, J. B., Halpin, C. and Noad, J. P., J. Appl. Phys. 60, 2949 (1986).Google Scholar
4Webb, J. B. and Halpin, C., Appl. Phys. Lett. 47, 831 (1985).Google Scholar
5Webb, J. B., Chemtronics, 1, 3 (1987).Google Scholar
6Pinczuk, A. and Burstein, E., Phys. Rev. Lett. 21, 1073 (1968).Google Scholar
7Yu, P. Y. and Shen, Y. R., Phys. Rev. Lett. 29, 468 (1972).Google Scholar
8Dreybrodt, W., Richter, W., Cerdeira, F. and Cardona, M., Phys. Stat. Sol. (b) 60, 145 (1973).Google Scholar
9Yu, P. Y. and Shen, Y. R., Solid State Commun. 15, 161 (1974).Google Scholar
10Kiefer, W., Richter, W. and Cardona, M., Phys. Rev. B12, 2346 (1975).Google Scholar
11Farrow, R. L. and Chang, R. K., Solid State Electron. 21, 1347 (1978).Google Scholar
12Geurts, J. and Richter, W., in Physics of Semiconductors, 1978, ed. by Wilson, B. L. H., Ins. Phys. Conf. Ser. No. 43, The Institute of Physics, Bristol, 1979, p.513.Google Scholar
13Dornhaus, R., Farrow, R. L. and Chang, R. K., in Light Scattering in Solids, edited by Birman, J. L., Cummins, H. Z. and Rebane, K. K., Plenum Press, New York, 1979, p.299.Google Scholar
14Dornhaus, R., Farrow, R. L. and Chang, R. K., Solid State Commun. 35, 123 (1980).Google Scholar
15Aoki, K., Abastassakis, E. and Cardona, M., Phys. Rev. B30, 681 (1989).Google Scholar
16Menendez, J., Vina, L., Cardona, M. and Anastassakis, E., Phys. Rev. B32, 3966 (1985).Google Scholar
17Feng, Z. C., Perkowitz, S., Wrobel, J. M. and Dubowski, J. J., Phys. Rev. B39, 12997 (1989).Google Scholar
18Choyke, W. J., Feng, Z. C. and Powell, J. A., J. Appl. Phys. 64, 3163 (1988).Google Scholar
19Feng, Z. C., Mascarenhas, A., Choyke, W. J. and Powell, J. A., J. Appl. Phys. 64, 3176 (1988).Google Scholar
20Feng, Z. C., Choyke, W. J. and Powell, J. A., J. Appl. Phys. 64, 6827 (1988).Google Scholar