Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T10:49:56.192Z Has data issue: false hasContentIssue false

Pulsed Ion Beam Induced Crystallization and Amorphization of Silicon

Published online by Cambridge University Press:  26 February 2011

Jan Linnros
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 USA
W. L. Brown
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 USA
R. G. Elliman
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974 USA
Get access

Abstract

The ion-bombardment-induced movement of an amorphous/crystalline interface in silicon has been studied under pulsed beam conditions. Irradiations were performed with a 1.5 MeV Xe beam at temperatures of 200–300°C which induced a planar motion of the interface, either to epitaxially crystallize the amorphous material or to planar amorphize the crystalline material. It is found that at a fixed peak and average beam current the result of pulsed irradiation can vary from amorphization at low pulse repetition frequency to crystallization at high pulse repetition frequency. The frequency which characterizes this change in behavior is virtually temperature independent but strongly dependent on peak beam flux.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Csepregi, L., Kennedy, E. F., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 49, 3906 (1978).Google Scholar
[2] Olson, G. L., Kokorowski, S. A., Roth, J. A., and Hess, L. D., in Laser-Solid Interactions and Transient Thermal Processing of Materials, edited by Narayan, J., Brown, W. L. and Lemons, R. A., Mat. Res. Soc. Symp. Proc. Vol. 13, North-Holland, New York, 1983) p. 141.Google Scholar
[3] Linnros, J., Holmeé, G., and Svensson, B., Phys. Rev. B32 2770 (1985).Google Scholar
[4] Elliman, R. G., Williams, J. S., Brown, W. L., Leiberich, A., Maher, D. M., and Knoell, R. V., Nucl. Instrum. Methods B19/20 435 (1987).Google Scholar
[5] Linnros, J., PhD thesis, Chalmers University of technology, Göteborg, Sweden, 1985; Linnros, J. and Holmén, G., accepted for publication in J.Appl.Phys:Google Scholar
[6] Leiberich, A., Maher, D. M., Knoell, R. V., and Brown, W. L., Nucl. Instrum. Methods B19/20, 457 (1987).CrossRefGoogle Scholar
[7] Linnros, J., Elliman, R. G., and Brown, W. L., in “Beam Solid Interactions and Transient Processes”, edited by Picraux, S. T., Thompson, M. O., and Williams, J. S. (Mat. Res. Soc. Symp. Proc. Vol.74, Mat. Res. Soc., Pittsburgh, 1987), p.477; W. L. Brown, R. G. Elliman, R. V. Knoell, A. Leiberich, J. Linnros, D. M. Maher and J. S. Williams in “Microscopy of Semiconducting Materials 1987”, edited by A. G. Cullis and P. D. Augustus, Institute of Physics Conf. Series '87 (Bristol 1987) p. 61.Google Scholar
[8] Vook, F. L. and Stein, H. J., Radiat. Eff. 2, 23, (1969).CrossRefGoogle Scholar
[9] Elliman, R. G., Linnros, J., Brown, W. L., Proc. Mat. Res. Soc., this volume.Google Scholar