Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-h4v4t Total loading time: 0.277 Render date: 2022-06-27T00:37:40.352Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Polarization effects in AlxGa1−xN / GaN superlattices

Published online by Cambridge University Press:  17 March 2011

Erik L. Waldron
Affiliation:
Photonics Center, Boston University, Boston, Massachusetts 02215, U.S.A.
E. Fred Schubert
Affiliation:
Photonics Center, Boston University, Boston, Massachusetts 02215, U.S.A.
John W. Graff
Affiliation:
Photonics Center, Boston University, Boston, Massachusetts 02215, U.S.A.
Andrei Osinsky
Affiliation:
Corning Applied Technologies, Woburn, Massachusetts 01801, U.S.A.
Michael J. Murphy
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
William F. Schaff
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853, U.S.A.
Get access

Abstract

Room temperature and low temperature photoluminescence studies of AlxGa1−xN/GaN superlattices reveal a red shift of the dominant transition band relative to the bulk GaN bandgap. The shift is attributed to the quantum-confined Stark effect resulting from polarization fields in the superlattices. A theoretical model for the band-to-band transition energies based on perturbation theory and a variational approach is developed. Comparison of the experimental data with this model yields a polarization field of 4.6 × 105 V/cm for room temperature Al0.1Ga0.9N/GaN and 4.5 × 105 V/cm for room temperature Al0.2Ga0.8N/GaN. At low temperatures the model yields 5.3 × 105 V/cm for Al0.1Ga0.9N/GaN and 6.3 × 105 V/cm for Al0.2Ga0.8N/GaN. The emission bands exhibit a blue shift at high excitation densities indicating screening of internal polarization fields by photo-generated free carriers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schubert, E. F., Grieshaber, W., and Goepfert, I. D., Appl. Phys. Lett. 69, 3737 (1996).CrossRefGoogle Scholar
2. Hsu, L. and Walukiewicz, W., Appl. Phys. Lett. 74, 2405 (1999).CrossRefGoogle Scholar
3. Goepfert, I. D., Schubert, E. F., Osinsky, A., and Norris, P. E., Electron. Lett. 35, 1109 (1999).CrossRefGoogle Scholar
4. Kozodoy, P., Smorchkova, Y. P., Hansen, M., Xing, Huili, DenBaars, S. P., Mishra, U. K., Saxler, A. W., Perrin, R., and Mitchel, W. C., Appl. Phys. Lett. 75, 2444 (1999). See also P. Kozodoy, M. Hansen, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 74, 3681 (1999).CrossRefGoogle Scholar
5. Saxler, A., Mitchel, W. C., Kung, P., and Razeghi, M., Appl. Phys. Lett. 74, 2023 (1999).CrossRefGoogle Scholar
6. Fiorentini, V., Bernardini, F., Sala, F. Della, Carlo, A. Di, and Lugli, P., available at http://xxx.lanl.gov/abs/condmat/9808098. See also F. Bernardini, V. Fiorentini, Phys. Rev. B 57, R9427 (1998). See also F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997). See also F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10 024 (1997).Google Scholar
7. Ambacher, O., Smart, J., Shealy, J. R., Weimann, N. G., Chu, K., Murphy, M., Schaff, W. J., Eastman, L. F., Dimitrov, R., Wittmer, L., Stutzmann, M., Rieger, W., and Hilsenbeck, J., J. Appl. Phys. 85, 3222 (1999).CrossRefGoogle Scholar
8. Sala, Fabio Della, Carlo, Aldo Di, Lugli, Paolo, Bernardini, Fabio, Fiorentini, Vincenzo, Scholz, Reinhard, and Jancu, Jean-Marc, Appl. Phys. Lett. 74, 2002 (1999).CrossRefGoogle Scholar
9. Grandjean, N., Damilano, B., Dalmasso, S., Leroux, M., Laügt, M., and Massies, J., J. Appl. Phys. 86, 3714 (1999).CrossRefGoogle Scholar
10. Yu, E. T., Dang, X. Z., Yu, L. S., Qiao, D., Asbeck, P. M., Lau, S. S., Sullivan, G. J., Boutros, K. S. and Redwing, J. M., Appl. Phys. Lett 73, 1880 (1998).CrossRefGoogle Scholar
11. Leroux, M., Grandjean, N., Laügt, M., Massies, J., Gil, B., Lefebvre, P., and Bigenwald, P., Phys. Rev. B 58, R13 371 (1998).CrossRefGoogle Scholar
12. Kim, H. S., Lin, J. Y., Jiang, H. X., Chow, W. W., Botchkarev, A., and Morkoç, H., Appl. Phys. Lett. 73, 3426 (1998).CrossRefGoogle Scholar
13. Lefebvre, P., Gil, B., Allègre, J., Mathieu, H., Grandjean, N., Leroux, M., Massies, J., and Bigenwald, P., MRS Internet J. Nitride Semicond. Res. 4S1, G3.69 (1999).Google Scholar
14. Grandjean, N., Massies, J., and Leroux, M., Appl. Phys. Lett. 74, 2361 (1999).CrossRefGoogle Scholar
15. Simon, J., Langer, R., Barski, A., and Pelekanos, N. T., Phys. Rev. B 61, 7211 (2000).CrossRefGoogle Scholar
16. Im, Jin Seo, Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998).Google Scholar
17.It is well known that the oscillator strength is reduced due to piezoelectric effects in AlxGa1−xN / GaN quantum wells. Because the oscillator strengths do not affect the main photon transition energies, we do not consider them.Google Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Polarization effects in AlxGa1−xN / GaN superlattices
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Polarization effects in AlxGa1−xN / GaN superlattices
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Polarization effects in AlxGa1−xN / GaN superlattices
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *