Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-19T23:32:57.386Z Has data issue: false hasContentIssue false

Photo-electrical Effect of Pristine and Functionalized Graphene Grown by Chemical Vapor Deposition

Published online by Cambridge University Press:  20 May 2011

Jian Lin
Affiliation:
Department of Mechanical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A.
Jiebin Zhong
Affiliation:
Department of Mechanical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A.
Jennifer Reiber Kyle
Affiliation:
Department of Electrical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A.
Miroslav Penchev
Affiliation:
Department of Electrical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A.
Mihrimah Ozkan
Affiliation:
Department of Electrical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A.
Cengiz S. Ozkan
Affiliation:
Department of Mechanical engineering,, University of California at Riverside, Riverside, CA 92521, U.S.A. Department of Material science and engineering, University of California at Riverside, Riverside, CA 92521, U.S.A.
Get access

Abstract

In this poster we will present the photo-electrical effect of pristine and nitric acid treated graphene field effect transistors made by chemical vapor deposition (CVD). The results of the decreased electrical conductance and shift of Dirac point arise from the molecular photodesorption from graphene. When post treated with nitric acid the photodesorption efficiency was decrease from 52% to 21%, which was proposed to be caused by the passivation of oxygen-bearing functionalities to CVD graphene structural defects. This result provides a new strategy of stabilizing the electrical performance of CVD graphene which is promising candidate as highly conductively photoelectrical material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Leenaerts, O., Partoens, B., and Peeters, F. M., Physical Review B 77 (2008).Google Scholar
2. Ao, Z. M., Li, S., and Jiang, Q., Solid State Commun. 150, 680 (2010).Google Scholar
3. Huang, B., Li, Z. Y., Liu, Z. R., Zhou, G., Hao, S. G., Wu, J., Gu, B. L., and Duan, W. H., J. Phys. Chem. C 112, 13442 (2008).Google Scholar
4. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., and Novoselov, K. S., Nat. Mater. 6, 652 (2007).Google Scholar
5. Shi, Y. M., Fang, W. J., Zhang, K. K., Zhang, W. J., and Li, L. J., Small 5, 2005 (2009).Google Scholar
6. Sundaram, R. S., Gomez-Navarro, C., Balasubramanian, K., Burghard, M., and Kern, K., Advanced Materials 20, 3050 (2008).Google Scholar
7. Dan, Y. P., Lu, Y., Kybert, N. J., Luo, Z. T., and Johnson, A. T. C., Nano Lett. 9, 1472 (2009).Google Scholar
8. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B., and Weiller, B. H., ACS Nano 3, 301 (2009).Google Scholar
9. Romero, H. E., Joshi, P., Gupta, A. K., Gutierrez, H. R., Cole, M. W., Tadigadapa, S. A., and Eklund, P. C., Nanotechnology 20 (2009).Google Scholar
10. Wang, X. R., Li, X. L., Zhang, L., Yoon, Y., Weber, P. K., Wang, H. L., Guo, J., and Dai, H. J., Science 324, 768 (2009).Google Scholar
11. Chen, R. J., Franklin, N. R., Kong, J., Cao, J., Tombler, T. W., Zhang, Y. G., and Dai, H. J., Appl. Phys. Lett. 79, 2258 (2001).Google Scholar
12. Romero, H. E., Shen, N., Joshi, P., Gutierrez, H. R., Tadigadapa, S. A., Sofo, J. O., and Eklund, P. C., ACS Nano 2, 2037 (2008).Google Scholar
13. Bae, S., Kim, H., Lee, Y., Xu, X. F., Park, J. S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Ozyilmaz, B., Ahn, J. H., Hong, B. H., and Iijima, S., Nat. Nanotechnol. 5, 574 (2010).Google Scholar
14. Lin, J., Teweldebrhan, D., Ashraf, K., Liu, G. X., Jing, X. Y., Yan, Z., Li, R., Ozkan, M., Lake, R. K., Balandin, A. A., and Ozkan, C. S., Small 6, 1150 (2010).Google Scholar
15. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K., Ferrari, A. C., and Mauri, F., Nat. Mater. 6, 198 (2007).Google Scholar
16. Rusu, C. N. and Yates, J. T., Langmuir 13, 4311 (1997).Google Scholar
17. Lin, J., Penchev, M., Wang, G., Paul, R., Zhong, J., Jing, X., Ozkan, M., and Ozkan, C., Small 6, 2448 (2010).Google Scholar
18. Paul, R.K., Ghazinejad, M., Penchev, M., Lin, J., Ozkan, M., and Ozkan, C. S., Small 6, 2309 (2010).Google Scholar
19. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J. H., Kim, P., Choi, J. Y., and Hong, B. H., Nature 457, 706 (2009).Google Scholar
20. Robinson, J. A., Snow, E. S., Badescu, S. C., Reinecke, T. L., and Perkins, F. K., Nano Lett. 6, 1747 (2006).Google Scholar
21. Hirsch, A. and Vostrowsky, O., Functional Molecular Nanostructures 245, 193 (2005).Google Scholar