Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T09:32:06.363Z Has data issue: false hasContentIssue false

Ordering in GaxIn1−xAsyP1−y Detected by Diffraction Methods

Published online by Cambridge University Press:  10 February 2011

I. Rechenberg
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany, rechenbg @ fbh.fta-berlin.de
A. Oster
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany, rechenbg @ fbh.fta-berlin.de
A. Knauer
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany, rechenbg @ fbh.fta-berlin.de
U. Richter
Affiliation:
Labor für Elektronenmikroskopie e.V., Weinbergweg 23, D-06120 Halle/Saale, Germany
J. Menniger
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5, D-10117 Berlin, Germany
M. Weyers
Affiliation:
Ferdinand-Braun-Institut für Höchstfrequenztechnik, Rudower Chaussee 5, D-12489 Berlin, Germany, rechenbg @ fbh.fta-berlin.de
Get access

Abstract

Ga0.54In0.46As0.12P0.88 lattice matched to GaAs and grown by metal organic vapor phase epitaxy (MOVPE) shows an anomalous temperature behaviour of its cathodoluminescence (CL) emission. Using high resolution x-ray diffraction (HRXRD) and transmission electron diffraction (TED), ordering in this quarternary alloy can be identified as the reason for this behaviour. The ordering follows the same trends with respect to misorientation that are known for InGaP. In addition to ordering, compositional fluctuations related to a miscibility gap are found in this material. In contrast, layers with a higher As-content (y=0.5; y=0.76) do not show properties related to ordering.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Razeghi, M., He, X. G., Diaz, J., Hoff, J., Erdtmann, M. and Kolev, E., SPIE 2145, p.23 (1994).Google Scholar
2. Glas, F., Inst. Phys. Conf. Ser. No.134; Section 6, p. 269 (1993).Google Scholar
3. Shahid, M. A., Mahajan, S., Laughlin, D. E. and Cox, H. M., Phys. Rev. Lett. 58, p. 257 (1987).Google Scholar
4. Piano, W. E., Nam, D. W., Major, J. S. Jr., Hsieh, K. C. and Holonyak, N. Jr., Appl. Phys. Lett. 53, p. 2537 (1988).Google Scholar
5. Francesio, L., Franzosi, P., Caldironi, M., Vitali, L., Dellagiovanna, M., Paola, A. Di, Vidimari, F. and Pellegrino, S., ICMOVPE VII, Int. Conf. on Metalorganic Vapor Phase Epitaxy, Yokohama, Japan, Conf. Digest p. 216 (1995).Google Scholar
6. DeLong, M. C., Mowbray, D. J., Hogg, R. A., Skolnick, M. S., Hopkins, M., Dal, J. P. R., Taylor, P.C., Kurtz, S. R. and Olson, J. M., J. Appl. Phys. 73, p.513 (1993).Google Scholar
7. Knauer, A., Erbert, G., Gramlich, S., Oster, A., Richter, E., Zeimer, U. and Weyers, M., to be published J. Electron. Mater. 24 (1995).Google Scholar
8. Ishimaru, M., Matsumura, S., Kuwano, N. and Oki, K., Phys. Rev. B 51, p. 9707 (1995).Google Scholar
9. Baxter, C. S., Stobbs, W. M. and Wilkie, J. H., J. Cryst. Growth 112, p. 373 (1991).Google Scholar
10. McDevitt, T.L., Mahajan, S., Laughlin, D. E., Bonner, W. A. and Keramidas, V. G., Phys. Rev. B 45, p. 6614 (1992) II.Google Scholar
11. Follstaedt, D. M., Schneider, R. P. Jr. and Jones, E. D., J. Appl. Phys 77, p. 3077 (1995).Google Scholar